视频摘要的注意和对抗性学习

Tsu-Jui Fu, Shao-Heng Tai, Hwann-Tzong Chen
{"title":"视频摘要的注意和对抗性学习","authors":"Tsu-Jui Fu, Shao-Heng Tai, Hwann-Tzong Chen","doi":"10.1109/WACV.2019.00173","DOIUrl":null,"url":null,"abstract":"This paper aims to address the video summarization problem via attention-aware and adversarial training. We formulate the problem as a sequence-to-sequence task, where the input sequence is an original video and the output sequence is its summarization. We propose a GAN-based training framework, which combines the merits of unsupervised and supervised video summarization approaches. The generator is an attention-aware Ptr-Net that generates the cutting points of summarization fragments. The discriminator is a 3D CNN classifier to judge whether a fragment is from a ground-truth or a generated summarization. The experiments show that our method achieves state-of-the-art results on SumMe, TVSum, YouTube, and LoL datasets with 1.5% to 5.6% improvements. Our Ptr-Net generator can overcome the unbalanced training-test length in the seq2seq problem, and our discriminator is effective in leveraging unpaired summarizations to achieve better performance.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Attentive and Adversarial Learning for Video Summarization\",\"authors\":\"Tsu-Jui Fu, Shao-Heng Tai, Hwann-Tzong Chen\",\"doi\":\"10.1109/WACV.2019.00173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to address the video summarization problem via attention-aware and adversarial training. We formulate the problem as a sequence-to-sequence task, where the input sequence is an original video and the output sequence is its summarization. We propose a GAN-based training framework, which combines the merits of unsupervised and supervised video summarization approaches. The generator is an attention-aware Ptr-Net that generates the cutting points of summarization fragments. The discriminator is a 3D CNN classifier to judge whether a fragment is from a ground-truth or a generated summarization. The experiments show that our method achieves state-of-the-art results on SumMe, TVSum, YouTube, and LoL datasets with 1.5% to 5.6% improvements. Our Ptr-Net generator can overcome the unbalanced training-test length in the seq2seq problem, and our discriminator is effective in leveraging unpaired summarizations to achieve better performance.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

本文旨在通过注意感知和对抗训练来解决视频摘要问题。我们将问题表述为序列到序列的任务,其中输入序列是原始视频,输出序列是其摘要。我们提出了一个基于gan的训练框架,它结合了无监督和有监督视频摘要方法的优点。该生成器是一个注意感知的Ptr-Net,用于生成摘要片段的切点。鉴别器是一个3D CNN分类器,用来判断一个片段是来自ground truth还是一个生成的摘要。实验表明,我们的方法在SumMe、TVSum、YouTube和LoL数据集上取得了最先进的结果,提高了1.5%到5.6%。我们的Ptr-Net生成器可以克服seq2seq问题中训练-测试长度不平衡的问题,我们的鉴别器可以有效地利用非配对摘要来获得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attentive and Adversarial Learning for Video Summarization
This paper aims to address the video summarization problem via attention-aware and adversarial training. We formulate the problem as a sequence-to-sequence task, where the input sequence is an original video and the output sequence is its summarization. We propose a GAN-based training framework, which combines the merits of unsupervised and supervised video summarization approaches. The generator is an attention-aware Ptr-Net that generates the cutting points of summarization fragments. The discriminator is a 3D CNN classifier to judge whether a fragment is from a ground-truth or a generated summarization. The experiments show that our method achieves state-of-the-art results on SumMe, TVSum, YouTube, and LoL datasets with 1.5% to 5.6% improvements. Our Ptr-Net generator can overcome the unbalanced training-test length in the seq2seq problem, and our discriminator is effective in leveraging unpaired summarizations to achieve better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ancient Painting to Natural Image: A New Solution for Painting Processing GAN-Based Pose-Aware Regulation for Video-Based Person Re-Identification Coupled Generative Adversarial Network for Continuous Fine-Grained Action Segmentation Dense 3D Point Cloud Reconstruction Using a Deep Pyramid Network 3D Reconstruction and Texture Optimization Using a Sparse Set of RGB-D Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1