{"title":"用于被动治疗的肘关节矫形机器人的设计与控制","authors":"Hmaied Hmida, S. Hafsi, F. Bouani","doi":"10.1109/scc53769.2021.9768347","DOIUrl":null,"url":null,"abstract":"This paper presents the design and the position control of a robotic rehabilitation didactic system. This robot is an upper limb device simulating the passive rehabilitation of a human elbow joint. The limb dynamic is unknown and differs from one patient to another so only the model of the orthosis robot is identified. Then, experiments were performed without load and three controllers are designed. A comparative study between predictive, PI and RST controllers is established in a real time environment. This comparison highlights the effectiveness of the model predictive controller.","PeriodicalId":365845,"journal":{"name":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and control of an Elbow Joint Orthosis Robot for a passive therapy\",\"authors\":\"Hmaied Hmida, S. Hafsi, F. Bouani\",\"doi\":\"10.1109/scc53769.2021.9768347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and the position control of a robotic rehabilitation didactic system. This robot is an upper limb device simulating the passive rehabilitation of a human elbow joint. The limb dynamic is unknown and differs from one patient to another so only the model of the orthosis robot is identified. Then, experiments were performed without load and three controllers are designed. A comparative study between predictive, PI and RST controllers is established in a real time environment. This comparison highlights the effectiveness of the model predictive controller.\",\"PeriodicalId\":365845,\"journal\":{\"name\":\"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scc53769.2021.9768347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 2nd International Conference on Signal, Control and Communication (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scc53769.2021.9768347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and control of an Elbow Joint Orthosis Robot for a passive therapy
This paper presents the design and the position control of a robotic rehabilitation didactic system. This robot is an upper limb device simulating the passive rehabilitation of a human elbow joint. The limb dynamic is unknown and differs from one patient to another so only the model of the orthosis robot is identified. Then, experiments were performed without load and three controllers are designed. A comparative study between predictive, PI and RST controllers is established in a real time environment. This comparison highlights the effectiveness of the model predictive controller.