POPDNet:基于三笛卡尔通道体素数据的原始目标姿态检测网络

Alireza Makki, Alireza Hadi, Bahram Tarvirdizadeh, M. Teimouri
{"title":"POPDNet:基于三笛卡尔通道体素数据的原始目标姿态检测网络","authors":"Alireza Makki, Alireza Hadi, Bahram Tarvirdizadeh, M. Teimouri","doi":"10.1109/ICSPIS54653.2021.9729364","DOIUrl":null,"url":null,"abstract":"In this article, the vision problem in a robotic application is under focus to handle the grasping of objects based on a new method. Converting an object into primitive objects is assumed to be done in the first step of the vision scenario. The second step, which is the main contribution of this paper, is classifying a primitive object and determining its position, orientation, and dimensions. In this way, the voxel data with three Cartesian channels of a primitive object is considered the input of a convolutional neural network that extracts the required parameters. A virtual camera in the simulation tool (Gazebo) is used to prepare the necessary dataset for training the neural network. Although the use of voxel data with Cartesian channels increases the volume of input data and slows down the processing speed, it is shown in this study that it effectively improves the accuracy of the network in estimating the parameters of primitive objects. Based on the provided virtual dataset, the mean errors when using Cartesian channels are decreased 81%, −33%, and 53% for the position, orientation, and dimensions, respectively, compared to binary voxel data. In the same comparison, these errors are −7%, 80%, and 55% lower than RGB data.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"POPDNet: Primitive Object Pose Detection Network Based on Voxel Data with Three Cartesian Channels\",\"authors\":\"Alireza Makki, Alireza Hadi, Bahram Tarvirdizadeh, M. Teimouri\",\"doi\":\"10.1109/ICSPIS54653.2021.9729364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the vision problem in a robotic application is under focus to handle the grasping of objects based on a new method. Converting an object into primitive objects is assumed to be done in the first step of the vision scenario. The second step, which is the main contribution of this paper, is classifying a primitive object and determining its position, orientation, and dimensions. In this way, the voxel data with three Cartesian channels of a primitive object is considered the input of a convolutional neural network that extracts the required parameters. A virtual camera in the simulation tool (Gazebo) is used to prepare the necessary dataset for training the neural network. Although the use of voxel data with Cartesian channels increases the volume of input data and slows down the processing speed, it is shown in this study that it effectively improves the accuracy of the network in estimating the parameters of primitive objects. Based on the provided virtual dataset, the mean errors when using Cartesian channels are decreased 81%, −33%, and 53% for the position, orientation, and dimensions, respectively, compared to binary voxel data. In the same comparison, these errors are −7%, 80%, and 55% lower than RGB data.\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文针对机器人应用中的视觉问题,提出了一种新的抓取物体的方法。假设在视觉场景的第一步就完成了将对象转换为基本对象的工作。第二步是对原始物体进行分类并确定其位置、方向和尺寸,这也是本文的主要贡献。这样,具有三个笛卡尔通道的原语对象体素数据被视为卷积神经网络的输入,卷积神经网络提取所需的参数。仿真工具(Gazebo)中的虚拟摄像机用于准备训练神经网络所需的数据集。虽然使用带有笛卡尔通道的体素数据增加了输入数据量,降低了处理速度,但本研究表明,它有效地提高了网络估计原语对象参数的准确性。基于所提供的虚拟数据集,与二进制体素数据相比,使用笛卡尔通道的位置、方向和尺寸的平均误差分别降低了81%、- 33%和53%。在相同的比较中,这些误差分别比RGB数据低- 7%,80%和55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POPDNet: Primitive Object Pose Detection Network Based on Voxel Data with Three Cartesian Channels
In this article, the vision problem in a robotic application is under focus to handle the grasping of objects based on a new method. Converting an object into primitive objects is assumed to be done in the first step of the vision scenario. The second step, which is the main contribution of this paper, is classifying a primitive object and determining its position, orientation, and dimensions. In this way, the voxel data with three Cartesian channels of a primitive object is considered the input of a convolutional neural network that extracts the required parameters. A virtual camera in the simulation tool (Gazebo) is used to prepare the necessary dataset for training the neural network. Although the use of voxel data with Cartesian channels increases the volume of input data and slows down the processing speed, it is shown in this study that it effectively improves the accuracy of the network in estimating the parameters of primitive objects. Based on the provided virtual dataset, the mean errors when using Cartesian channels are decreased 81%, −33%, and 53% for the position, orientation, and dimensions, respectively, compared to binary voxel data. In the same comparison, these errors are −7%, 80%, and 55% lower than RGB data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Fault Diagnosis of Rolling BearingBased on Deep Transfer Learning Using Time-Frequency Representation Wind Energy Potential Approximation with Various Metaheuristic Optimization Techniques Deployment Listening to Sounds of Silence for Audio replay attack detection Transcranial Magnetic Stimulation of Prefrontal Cortex Alters Functional Brain Network Architecture: Graph Theoretical Analysis Anomaly Detection and Resilience-Oriented Countermeasures against Cyberattacks in Smart Grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1