社会网络中分散的核心-外围结构加速了基于主体模型的文化创新

Jesse Milzman, Cody Moser
{"title":"社会网络中分散的核心-外围结构加速了基于主体模型的文化创新","authors":"Jesse Milzman, Cody Moser","doi":"10.48550/arXiv.2302.12121","DOIUrl":null,"url":null,"abstract":"Previous investigations into creative and innovation networks have suggested that innovations often occurs at the boundary between the network's core and periphery. In this work, we investigate the effect of global core-periphery network structure on the speed and quality of cultural innovation. Drawing on differing notions of core-periphery structure from [arXiv:1808.07801] and [doi:10.1016/S0378-8733(99)00019-2], we distinguish decentralized core-periphery, centralized core-periphery, and affinity network structure. We generate networks of these three classes from stochastic block models (SBMs), and use them to run an agent-based model (ABM) of collective cultural innovation, in which agents can only directly interact with their network neighbors. In order to discover the highest-scoring innovation, agents must discover and combine the highest innovations from two completely parallel technology trees. We find that decentralized core-periphery networks outperform the others by finding the final crossover innovation more quickly on average. We hypothesize that decentralized core-periphery network structure accelerates collective problem-solving by shielding peripheral nodes from the local optima known by the core community at any given time. We then build upon the\"Two Truths\"hypothesis regarding community structure in spectral graph embeddings, first articulated in [arXiv:1808.07801], which suggests that the adjacency spectral embedding (ASE) captures core-periphery structure, while the Laplacian spectral embedding (LSE) captures affinity. We find that, for core-periphery networks, ASE-based resampling best recreates networks with similar performance on the innovation SBM, compared to LSE-based resampling. Since the Two Truths hypothesis suggests that ASE captures core-periphery structure, this result further supports our hypothesis.","PeriodicalId":326727,"journal":{"name":"Adaptive Agents and Multi-Agent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized core-periphery structure in social networks accelerates cultural innovation in agent-based model\",\"authors\":\"Jesse Milzman, Cody Moser\",\"doi\":\"10.48550/arXiv.2302.12121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous investigations into creative and innovation networks have suggested that innovations often occurs at the boundary between the network's core and periphery. In this work, we investigate the effect of global core-periphery network structure on the speed and quality of cultural innovation. Drawing on differing notions of core-periphery structure from [arXiv:1808.07801] and [doi:10.1016/S0378-8733(99)00019-2], we distinguish decentralized core-periphery, centralized core-periphery, and affinity network structure. We generate networks of these three classes from stochastic block models (SBMs), and use them to run an agent-based model (ABM) of collective cultural innovation, in which agents can only directly interact with their network neighbors. In order to discover the highest-scoring innovation, agents must discover and combine the highest innovations from two completely parallel technology trees. We find that decentralized core-periphery networks outperform the others by finding the final crossover innovation more quickly on average. We hypothesize that decentralized core-periphery network structure accelerates collective problem-solving by shielding peripheral nodes from the local optima known by the core community at any given time. We then build upon the\\\"Two Truths\\\"hypothesis regarding community structure in spectral graph embeddings, first articulated in [arXiv:1808.07801], which suggests that the adjacency spectral embedding (ASE) captures core-periphery structure, while the Laplacian spectral embedding (LSE) captures affinity. We find that, for core-periphery networks, ASE-based resampling best recreates networks with similar performance on the innovation SBM, compared to LSE-based resampling. Since the Two Truths hypothesis suggests that ASE captures core-periphery structure, this result further supports our hypothesis.\",\"PeriodicalId\":326727,\"journal\":{\"name\":\"Adaptive Agents and Multi-Agent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2302.12121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Agents and Multi-Agent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.12121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以往对创意和创新网络的研究表明,创新往往发生在网络的核心和边缘之间的边界。本文研究了全球核心-边缘网络结构对文化创新速度和质量的影响。根据[arXiv:1808.07801]和[doi:10.1016/S0378-8733(99)00019-2]中核心-外围结构的不同概念,我们区分了分散式核心-外围、集中式核心-外围和亲和网络结构。我们从随机块模型(sbm)中生成了这三种类型的网络,并使用它们来运行基于智能体的集体文化创新模型(ABM),其中智能体只能直接与它们的网络邻居进行交互。为了发现得分最高的创新,智能体必须从两个完全平行的技术树中发现并组合最高的创新。我们发现去中心化的核心-外围网络通过平均更快地找到最终的跨界创新而优于其他网络。我们假设,去中心化的核心-外围网络结构通过屏蔽外围节点,使其不受核心社区在任何给定时间已知的局部最优的影响,从而加速了集体问题的解决。然后,我们建立了关于光谱图嵌入中的群落结构的“两个真理”假设,该假设首先在[arXiv:1808.07801]中提出,这表明邻接谱嵌入(ASE)捕获核心-外围结构,而拉普拉斯谱嵌入(LSE)捕获亲和力。我们发现,对于核心-外围网络,与基于lse的重采样相比,基于ase的重采样在创新SBM上最好地再现了具有相似性能的网络。由于“两真理”假设表明,ASE捕获了核心-外围结构,因此这一结果进一步支持了我们的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized core-periphery structure in social networks accelerates cultural innovation in agent-based model
Previous investigations into creative and innovation networks have suggested that innovations often occurs at the boundary between the network's core and periphery. In this work, we investigate the effect of global core-periphery network structure on the speed and quality of cultural innovation. Drawing on differing notions of core-periphery structure from [arXiv:1808.07801] and [doi:10.1016/S0378-8733(99)00019-2], we distinguish decentralized core-periphery, centralized core-periphery, and affinity network structure. We generate networks of these three classes from stochastic block models (SBMs), and use them to run an agent-based model (ABM) of collective cultural innovation, in which agents can only directly interact with their network neighbors. In order to discover the highest-scoring innovation, agents must discover and combine the highest innovations from two completely parallel technology trees. We find that decentralized core-periphery networks outperform the others by finding the final crossover innovation more quickly on average. We hypothesize that decentralized core-periphery network structure accelerates collective problem-solving by shielding peripheral nodes from the local optima known by the core community at any given time. We then build upon the"Two Truths"hypothesis regarding community structure in spectral graph embeddings, first articulated in [arXiv:1808.07801], which suggests that the adjacency spectral embedding (ASE) captures core-periphery structure, while the Laplacian spectral embedding (LSE) captures affinity. We find that, for core-periphery networks, ASE-based resampling best recreates networks with similar performance on the innovation SBM, compared to LSE-based resampling. Since the Two Truths hypothesis suggests that ASE captures core-periphery structure, this result further supports our hypothesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Consistent Subelections Strategic Cost Selection in Participatory Budgeting Minimizing State Exploration While Searching Graphs with Unknown Obstacles vMFER: von Mises-Fisher Experience Resampling Based on Uncertainty of Gradient Directions for Policy Improvement of Actor-Critic Algorithms Reinforcement Nash Equilibrium Solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1