基于压缩分类器的自动攻击

Igor Burago, Daniel Lowd
{"title":"基于压缩分类器的自动攻击","authors":"Igor Burago, Daniel Lowd","doi":"10.1145/2808769.2808778","DOIUrl":null,"url":null,"abstract":"Methods of compression-based text classification have proven their usefulness for various applications. However, in some classification problems, such as spam filtering, a classifier confronts one or many adversaries willing to induce errors in the classifier's judgment on certain kinds of input. In this paper, we consider the problem of finding thrifty strategies for character-based text modification that allow an adversary to revert classifier's verdict on a given family of input texts. We propose three statistical statements of the problem that can be used by an attacker to obtain transformation models which are optimal in some sense. Evaluating these three techniques on a realistic spam corpus, we find that an adversary can transform a spam message (detectable as such by an entropy-based text classifier) into a legitimate one by generating and appending, in some cases, as few additional characters as 11% of the original length of the message.","PeriodicalId":426614,"journal":{"name":"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automated Attacks on Compression-Based Classifiers\",\"authors\":\"Igor Burago, Daniel Lowd\",\"doi\":\"10.1145/2808769.2808778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods of compression-based text classification have proven their usefulness for various applications. However, in some classification problems, such as spam filtering, a classifier confronts one or many adversaries willing to induce errors in the classifier's judgment on certain kinds of input. In this paper, we consider the problem of finding thrifty strategies for character-based text modification that allow an adversary to revert classifier's verdict on a given family of input texts. We propose three statistical statements of the problem that can be used by an attacker to obtain transformation models which are optimal in some sense. Evaluating these three techniques on a realistic spam corpus, we find that an adversary can transform a spam message (detectable as such by an entropy-based text classifier) into a legitimate one by generating and appending, in some cases, as few additional characters as 11% of the original length of the message.\",\"PeriodicalId\":426614,\"journal\":{\"name\":\"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2808769.2808778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808769.2808778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于压缩的文本分类方法已经证明了它们在各种应用中的有效性。然而,在一些分类问题中,例如垃圾邮件过滤,分类器面临一个或多个对手,这些对手愿意在分类器对某些类型输入的判断中诱导错误。在本文中,我们考虑了寻找基于字符的文本修改的节约策略的问题,该策略允许对手恢复分类器对给定输入文本族的判决。我们提出了问题的三种统计表述,攻击者可以利用这些表述来获得在某种意义上最优的转换模型。在一个真实的垃圾邮件语料库上评估这三种技术,我们发现攻击者可以通过生成和附加(在某些情况下)相当于消息原始长度11%的额外字符,将垃圾邮件消息(可以通过基于熵的文本分类器检测到)转换为合法消息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Attacks on Compression-Based Classifiers
Methods of compression-based text classification have proven their usefulness for various applications. However, in some classification problems, such as spam filtering, a classifier confronts one or many adversaries willing to induce errors in the classifier's judgment on certain kinds of input. In this paper, we consider the problem of finding thrifty strategies for character-based text modification that allow an adversary to revert classifier's verdict on a given family of input texts. We propose three statistical statements of the problem that can be used by an attacker to obtain transformation models which are optimal in some sense. Evaluating these three techniques on a realistic spam corpus, we find that an adversary can transform a spam message (detectable as such by an entropy-based text classifier) into a legitimate one by generating and appending, in some cases, as few additional characters as 11% of the original length of the message.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning for Enterprise Security Automated Attacks on Compression-Based Classifiers Better Malware Ground Truth: Techniques for Weighting Anti-Virus Vendor Labels Detecting Clusters of Fake Accounts in Online Social Networks Thwarting Fake OSN Accounts by Predicting their Victims
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1