通过线性化近似形状拟合

Sariel Har-Peled, Kasturi R. Varadarajan
{"title":"通过线性化近似形状拟合","authors":"Sariel Har-Peled, Kasturi R. Varadarajan","doi":"10.1109/SFCS.2001.959881","DOIUrl":null,"url":null,"abstract":"Shape fitting is a fundamental optimization problem in computer science. The authors present a general and unified technique for solving a certain family of such problems. Given a point set P in R/sup d/, this technique can be used to /spl epsi/-approximate: (i) the min-width annulus and shell that contains P, (ii) minimum width cylindrical shell containing P, (iii) diameter, width, minimum volume bounding box of P, and (iv) all the previous measures for the case the points are moving. The running time of the resulting algorithms is O(n + 1//spl epsi//sup c/), where c is a constant that depends on the problem at hand. Our new general technique enables us to solve those problems without resorting to a careful and painful case by case analysis, as was previously done for those problems. Furthermore, for several of those problems our results are considerably simpler and faster than what was previously known. In particular, for the minimum width cylindrical shell problem, our solution is the first algorithm whose running time is subquadratic in n. (In fact we get running time linear in n.).","PeriodicalId":378126,"journal":{"name":"Proceedings 2001 IEEE International Conference on Cluster Computing","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Approximate shape fitting via linearization\",\"authors\":\"Sariel Har-Peled, Kasturi R. Varadarajan\",\"doi\":\"10.1109/SFCS.2001.959881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shape fitting is a fundamental optimization problem in computer science. The authors present a general and unified technique for solving a certain family of such problems. Given a point set P in R/sup d/, this technique can be used to /spl epsi/-approximate: (i) the min-width annulus and shell that contains P, (ii) minimum width cylindrical shell containing P, (iii) diameter, width, minimum volume bounding box of P, and (iv) all the previous measures for the case the points are moving. The running time of the resulting algorithms is O(n + 1//spl epsi//sup c/), where c is a constant that depends on the problem at hand. Our new general technique enables us to solve those problems without resorting to a careful and painful case by case analysis, as was previously done for those problems. Furthermore, for several of those problems our results are considerably simpler and faster than what was previously known. In particular, for the minimum width cylindrical shell problem, our solution is the first algorithm whose running time is subquadratic in n. (In fact we get running time linear in n.).\",\"PeriodicalId\":378126,\"journal\":{\"name\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.2001.959881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.2001.959881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

形状拟合是计算机科学中的一个基本优化问题。作者提出了一种通用的、统一的方法来解决这类问题。给定R/sup /中的点集P,该技术可用于/spl epsi/-近似:(i)包含P的最小宽度环空和壳,(ii)包含P的最小宽度圆柱壳,(iii) P的直径,宽度,最小体积边界框,以及(iv)所有先前的点在移动情况下的测量。结果算法的运行时间为O(n + 1//spl epsi//sup c/),其中c是一个常数,取决于手头的问题。我们的新通用技术使我们能够解决这些问题,而不必诉诸于仔细和痛苦的逐个案例分析,就像以前对这些问题所做的那样。此外,对于其中的一些问题,我们的结果比以前已知的要简单和快速得多。特别是,对于最小宽度圆柱壳问题,我们的解是第一个运行时间在n上是次二次的算法(实际上我们得到的运行时间在n上是线性的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate shape fitting via linearization
Shape fitting is a fundamental optimization problem in computer science. The authors present a general and unified technique for solving a certain family of such problems. Given a point set P in R/sup d/, this technique can be used to /spl epsi/-approximate: (i) the min-width annulus and shell that contains P, (ii) minimum width cylindrical shell containing P, (iii) diameter, width, minimum volume bounding box of P, and (iv) all the previous measures for the case the points are moving. The running time of the resulting algorithms is O(n + 1//spl epsi//sup c/), where c is a constant that depends on the problem at hand. Our new general technique enables us to solve those problems without resorting to a careful and painful case by case analysis, as was previously done for those problems. Furthermore, for several of those problems our results are considerably simpler and faster than what was previously known. In particular, for the minimum width cylindrical shell problem, our solution is the first algorithm whose running time is subquadratic in n. (In fact we get running time linear in n.).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The complexity of factors of multivariate polynomials A replacement for Voronoi diagrams of near linear size "Planar" tautologies hard for resolution Traveling with a Pez dispenser (or, routing issues in MPLS) Almost tight upper bounds for vertical decompositions in four dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1