高精度uwb时间戳

C. M. D. Dominicis, A. Flammini, S. Rinaldi, E. Sisinni, A. Cazzorla, A. Moschitta, P. Carbone
{"title":"高精度uwb时间戳","authors":"C. M. D. Dominicis, A. Flammini, S. Rinaldi, E. Sisinni, A. Cazzorla, A. Moschitta, P. Carbone","doi":"10.1109/ISPCS.2011.6070150","DOIUrl":null,"url":null,"abstract":"The work presented in this paper is related with time synchronization for wireless networks. In particular, it is focused on the proposal and experimental evaluation of a low-cost and high precision timestamping technique based on Ultra Wide Band (UWB) signalling. In recent years, the use of such systems has gained an increasing success thanks to their robustness to interferers and multipath. In this paper a new hybrid wireless node is proposed; a traditional IEEE802.15.4 radio, the reference physical layer for wireless sensor networks, is supported by an UWB transceiver. The former is used for communication purposes and allows to preserve compatibility with already installed infrastructures/networks; the latter is used for time of arrival estimation. Hardware prototypes have been realized and experimental tests have shown a sub-nanosecond accuracy. A comparison with commercial solutions has shown a performance improvement with respect to conventional approaches.","PeriodicalId":416451,"journal":{"name":"2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"High-precision UWB-based timestamping\",\"authors\":\"C. M. D. Dominicis, A. Flammini, S. Rinaldi, E. Sisinni, A. Cazzorla, A. Moschitta, P. Carbone\",\"doi\":\"10.1109/ISPCS.2011.6070150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presented in this paper is related with time synchronization for wireless networks. In particular, it is focused on the proposal and experimental evaluation of a low-cost and high precision timestamping technique based on Ultra Wide Band (UWB) signalling. In recent years, the use of such systems has gained an increasing success thanks to their robustness to interferers and multipath. In this paper a new hybrid wireless node is proposed; a traditional IEEE802.15.4 radio, the reference physical layer for wireless sensor networks, is supported by an UWB transceiver. The former is used for communication purposes and allows to preserve compatibility with already installed infrastructures/networks; the latter is used for time of arrival estimation. Hardware prototypes have been realized and experimental tests have shown a sub-nanosecond accuracy. A comparison with commercial solutions has shown a performance improvement with respect to conventional approaches.\",\"PeriodicalId\":416451,\"journal\":{\"name\":\"2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCS.2011.6070150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCS.2011.6070150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文所做的工作与无线网络的时间同步有关。重点介绍了一种基于超宽带(UWB)信号的低成本高精度时间戳技术的提出和实验评估。近年来,由于其对干扰和多径的鲁棒性,这种系统的应用越来越成功。本文提出了一种新的混合无线节点;传统的IEEE802.15.4无线电(无线传感器网络的参考物理层)由UWB收发器支持。前者用于通信目的,并允许保持与已安装的基础设施/网络的兼容性;后者用于到达时间估计。硬件样机已经实现,实验测试表明精度达到亚纳秒级。与商业解决方案的比较表明,与传统方法相比,性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-precision UWB-based timestamping
The work presented in this paper is related with time synchronization for wireless networks. In particular, it is focused on the proposal and experimental evaluation of a low-cost and high precision timestamping technique based on Ultra Wide Band (UWB) signalling. In recent years, the use of such systems has gained an increasing success thanks to their robustness to interferers and multipath. In this paper a new hybrid wireless node is proposed; a traditional IEEE802.15.4 radio, the reference physical layer for wireless sensor networks, is supported by an UWB transceiver. The former is used for communication purposes and allows to preserve compatibility with already installed infrastructures/networks; the latter is used for time of arrival estimation. Hardware prototypes have been realized and experimental tests have shown a sub-nanosecond accuracy. A comparison with commercial solutions has shown a performance improvement with respect to conventional approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying IEEE 1588 to packet radio trilateration Validation and verification of IEEE 1588 Annex K White rabbit: a PTP application for robust sub-nanosecond synchronization Synchronizing the Linux system time to a PTP hardware clock A clock state estimator for PTP time synchronization in harsh environmental conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1