基于卷积神经网络的原子层沉积优化

Julian Cagnazzo, Osama Sam Abuomar, A. Yanguas-Gil, J. Elam
{"title":"基于卷积神经网络的原子层沉积优化","authors":"Julian Cagnazzo, Osama Sam Abuomar, A. Yanguas-Gil, J. Elam","doi":"10.1109/CSCI54926.2021.00110","DOIUrl":null,"url":null,"abstract":"Atomic layer deposition (ALD) is a chemical engineering process used to coat surfaces with a thin film. It is a versatile process able to deposit a wide range of films using different chemical reagents. When developing novel ALD processes, a technician must determine the dosing time of each reagent. To accelerate this development process, we trained convolutional neural networks to predict the reagent saturation times of novel ALD reactions given the reagent dosing times and film growth rates of example reactions. We generated two kinds of models. Single reaction models made predictions based on a single example ALD reaction. Multiple reaction models made predictions based on ten example reactions using the same reagents with different dosing times.","PeriodicalId":206881,"journal":{"name":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Layer Deposition Optimization Using Convolutional Neural Networks\",\"authors\":\"Julian Cagnazzo, Osama Sam Abuomar, A. Yanguas-Gil, J. Elam\",\"doi\":\"10.1109/CSCI54926.2021.00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomic layer deposition (ALD) is a chemical engineering process used to coat surfaces with a thin film. It is a versatile process able to deposit a wide range of films using different chemical reagents. When developing novel ALD processes, a technician must determine the dosing time of each reagent. To accelerate this development process, we trained convolutional neural networks to predict the reagent saturation times of novel ALD reactions given the reagent dosing times and film growth rates of example reactions. We generated two kinds of models. Single reaction models made predictions based on a single example ALD reaction. Multiple reaction models made predictions based on ten example reactions using the same reagents with different dosing times.\",\"PeriodicalId\":206881,\"journal\":{\"name\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI54926.2021.00110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI54926.2021.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

原子层沉积(ALD)是一种化学工程工艺,用于在表面上涂覆薄膜。它是一种通用的工艺,能够使用不同的化学试剂沉积各种各样的薄膜。当开发新的ALD工艺时,技术人员必须确定每种试剂的加药时间。为了加速这一开发过程,我们训练卷积神经网络来预测新的ALD反应的试剂饱和时间,给定试剂剂量时间和示例反应的膜生长速率。我们生成了两种模型。单一反应模型基于单一的ALD反应进行预测。多个反应模型根据使用相同试剂、不同给药时间的十个反应实例做出预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic Layer Deposition Optimization Using Convolutional Neural Networks
Atomic layer deposition (ALD) is a chemical engineering process used to coat surfaces with a thin film. It is a versatile process able to deposit a wide range of films using different chemical reagents. When developing novel ALD processes, a technician must determine the dosing time of each reagent. To accelerate this development process, we trained convolutional neural networks to predict the reagent saturation times of novel ALD reactions given the reagent dosing times and film growth rates of example reactions. We generated two kinds of models. Single reaction models made predictions based on a single example ALD reaction. Multiple reaction models made predictions based on ten example reactions using the same reagents with different dosing times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote Video Surveillance Effects of Social Distancing Intention, Affective Risk Perception, and Cabin Fever Syndrome on Perceived Value of E-learning : Type of submission: Late Breaking Paper / Most relevant symposium: CSCI-ISED Cybersecurity Integration: Deploying Critical Infrastructure Security and Resilience Topics into the Undergraduate Curriculum Distributed Algorithms for k-Coverage in Mobile Sensor Networks Software Development Methodologies for Virtual Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1