基于粗糙集的聚类算法

E. Xu, Gao Xuedong, Wu Sen, Yu Bin
{"title":"基于粗糙集的聚类算法","authors":"E. Xu, Gao Xuedong, Wu Sen, Yu Bin","doi":"10.1109/IS.2006.348465","DOIUrl":null,"url":null,"abstract":"Based on rough set theory, the paper proposed a clustering algorithm to deal with the quality and efficiency of clustering algorithm. By use of the consistency of condition attributes and decision attributes in the information table, the algorithm introduced a formula of attributes importance to reduce the redundant attributes. According to the data super-cube and entropy, the algorithm discretized the information table from global angle to local angle. Due to the set feature vector and set dissimilarity, the algorithm can cluster data just by scanning the information table only one time. The result of experiment indicates that the algorithm is efficient and effective","PeriodicalId":116809,"journal":{"name":"2006 3rd International IEEE Conference Intelligent Systems","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Clustering Algorithm Based on Rough Set\",\"authors\":\"E. Xu, Gao Xuedong, Wu Sen, Yu Bin\",\"doi\":\"10.1109/IS.2006.348465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on rough set theory, the paper proposed a clustering algorithm to deal with the quality and efficiency of clustering algorithm. By use of the consistency of condition attributes and decision attributes in the information table, the algorithm introduced a formula of attributes importance to reduce the redundant attributes. According to the data super-cube and entropy, the algorithm discretized the information table from global angle to local angle. Due to the set feature vector and set dissimilarity, the algorithm can cluster data just by scanning the information table only one time. The result of experiment indicates that the algorithm is efficient and effective\",\"PeriodicalId\":116809,\"journal\":{\"name\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International IEEE Conference Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS.2006.348465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International IEEE Conference Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2006.348465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于粗糙集理论,针对聚类算法的质量和效率问题,提出了一种聚类算法。该算法利用信息表中条件属性和决策属性的一致性,引入属性重要性公式,减少冗余属性。该算法根据数据超立方体和熵,从全局角度到局部角度对信息表进行离散化。由于设置了特征向量和不相似度,该算法只需扫描一次信息表即可实现数据聚类。实验结果表明,该算法是高效有效的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Clustering Algorithm Based on Rough Set
Based on rough set theory, the paper proposed a clustering algorithm to deal with the quality and efficiency of clustering algorithm. By use of the consistency of condition attributes and decision attributes in the information table, the algorithm introduced a formula of attributes importance to reduce the redundant attributes. According to the data super-cube and entropy, the algorithm discretized the information table from global angle to local angle. Due to the set feature vector and set dissimilarity, the algorithm can cluster data just by scanning the information table only one time. The result of experiment indicates that the algorithm is efficient and effective
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Neurofuzzy Adaptive Kalman Filter Artificial Intelligence Technique for Gene Expression Profiling of Urinary Bladder Cancer Evolutionary Support Vector Machines for Diabetes Mellitus Diagnosis IGUANA: Individuation of Global Unsafe ANomalies and Alarm activation Smart Data Analysis Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1