用burgers方程比较高阶紧致有限差分格式

W. Yap, W. Asrar, M. K. Mawlood, A. Omar
{"title":"用burgers方程比较高阶紧致有限差分格式","authors":"W. Yap, W. Asrar, M. K. Mawlood, A. Omar","doi":"10.1142/S1465876304002265","DOIUrl":null,"url":null,"abstract":"Two higher-order compact finite difference approaches, the Hermitian and the Lax-Wendroff are examined by applying them to the viscous Burgers' equation. The difference equations obtained by the two methods were integrated in time through the third-order Strong-Stability-Preserving Runge-Kutta scheme. Absolute errors are computed by using an exact solution. The results are also compared with a second order central difference scheme. The Hermitian approach is far easier to implement. On uniform grids the Lax-Wendroff scheme produces smaller errors during the initial stages, but both methods are equally good for larger durations of integration. The convergence rate of the Hermitian scheme is slightly higher than the Lax-Wendroff scheme although both are of fourth order. Both schemes are unstable beyond a certain step size in time and space. When numerical boundary conditions are imposed, second-order conditions produce the best results whereas linear extrapolation proved to be the worst. It was also observed that large domains were required to implement the numerical boundary conditions properly. There was no detrimental effect on the accuracy of the results obtained through either of the two schemes when the size of the domain was greatly increased. Both schemes showed remarkable improvement in accuracy when clustered grids were employed. However much smaller time steps are required for stable solutions.","PeriodicalId":331001,"journal":{"name":"Int. J. Comput. Eng. Sci.","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A comparison of higher-order compact finite difference schemes through burgers' equation\",\"authors\":\"W. Yap, W. Asrar, M. K. Mawlood, A. Omar\",\"doi\":\"10.1142/S1465876304002265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two higher-order compact finite difference approaches, the Hermitian and the Lax-Wendroff are examined by applying them to the viscous Burgers' equation. The difference equations obtained by the two methods were integrated in time through the third-order Strong-Stability-Preserving Runge-Kutta scheme. Absolute errors are computed by using an exact solution. The results are also compared with a second order central difference scheme. The Hermitian approach is far easier to implement. On uniform grids the Lax-Wendroff scheme produces smaller errors during the initial stages, but both methods are equally good for larger durations of integration. The convergence rate of the Hermitian scheme is slightly higher than the Lax-Wendroff scheme although both are of fourth order. Both schemes are unstable beyond a certain step size in time and space. When numerical boundary conditions are imposed, second-order conditions produce the best results whereas linear extrapolation proved to be the worst. It was also observed that large domains were required to implement the numerical boundary conditions properly. There was no detrimental effect on the accuracy of the results obtained through either of the two schemes when the size of the domain was greatly increased. Both schemes showed remarkable improvement in accuracy when clustered grids were employed. However much smaller time steps are required for stable solutions.\",\"PeriodicalId\":331001,\"journal\":{\"name\":\"Int. J. Comput. Eng. Sci.\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Eng. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1465876304002265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Eng. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1465876304002265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将两种高阶紧致有限差分方法,厄米差分方法和拉克斯-温德罗夫差分方法应用于粘性Burgers方程,对它们进行了检验。通过三阶强稳定保持龙格-库塔格式对两种方法得到的差分方程进行时间积分。绝对误差是用精确解计算出来的。结果还与二阶中心差分格式进行了比较。厄米方法更容易实现。在均匀网格上,Lax-Wendroff方案在初始阶段产生较小的误差,但对于较长的积分时间,两种方法都同样好。虽然两者都是四阶格式,但厄米格式的收敛速度略高于Lax-Wendroff格式。两种方案在时间和空间上超过一定步长后都是不稳定的。当施加数值边界条件时,二阶条件产生的结果最好,而线性外推的结果最差。还注意到,为了适当地实现数值边界条件,需要较大的域。当区域的大小大大增加时,两种方案对所得结果的精度都没有不利影响。当采用聚类网格时,两种方案的精度都有显著提高。然而,稳定解所需的时间步长要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparison of higher-order compact finite difference schemes through burgers' equation
Two higher-order compact finite difference approaches, the Hermitian and the Lax-Wendroff are examined by applying them to the viscous Burgers' equation. The difference equations obtained by the two methods were integrated in time through the third-order Strong-Stability-Preserving Runge-Kutta scheme. Absolute errors are computed by using an exact solution. The results are also compared with a second order central difference scheme. The Hermitian approach is far easier to implement. On uniform grids the Lax-Wendroff scheme produces smaller errors during the initial stages, but both methods are equally good for larger durations of integration. The convergence rate of the Hermitian scheme is slightly higher than the Lax-Wendroff scheme although both are of fourth order. Both schemes are unstable beyond a certain step size in time and space. When numerical boundary conditions are imposed, second-order conditions produce the best results whereas linear extrapolation proved to be the worst. It was also observed that large domains were required to implement the numerical boundary conditions properly. There was no detrimental effect on the accuracy of the results obtained through either of the two schemes when the size of the domain was greatly increased. Both schemes showed remarkable improvement in accuracy when clustered grids were employed. However much smaller time steps are required for stable solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Hybrid Boundary Element Method Applied to Problems of Potential Theory in Nonhomogeneous Materials On the Poisson's Ratio Effect on Mixed-mode Stress Intensity Factors and T-stress in Functionally Graded Materials Guest Editorial: Modeling of Functionally Graded Materials Effect of a Graded Interface on a Crack Approaching at an Oblique Angle Efficient Reformulation of the Thermal Higher-order Theory for Fgms with Locally Variable Conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1