二人议价博弈Q学习的策略更新方法

Jianing Xu, Bei Zhou, Nanlin Jin
{"title":"二人议价博弈Q学习的策略更新方法","authors":"Jianing Xu, Bei Zhou, Nanlin Jin","doi":"10.1145/3609703.3609722","DOIUrl":null,"url":null,"abstract":"Reinforcement learning algorithms have been used to discover the strategies in game theory. This study investigates whether Q learning, one of the classic reinforcement learning methods, is capable of training bargaining players via self-play, a training paradigm used by AlphaGo, to maximum their profit. We also compare our empirical results with the known theoretic solutions and perform an comprehensive analysis upon their differences. To accomplish these, we come up with two policy updating methods used in the training process, namely alternate update and simultaneous update, which are tailored for two players who propose offers and counter-offers in an alternating manner under a time constraint enforced by the discount factors. Our experimental results have demonstrated that the values of the discount factor actually have tangible impact on how far the bargaining outcomes deviate from the game theoretic solutions.","PeriodicalId":101485,"journal":{"name":"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Policy Updating Methods of Q Learning for Two Player Bargaining Game\",\"authors\":\"Jianing Xu, Bei Zhou, Nanlin Jin\",\"doi\":\"10.1145/3609703.3609722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning algorithms have been used to discover the strategies in game theory. This study investigates whether Q learning, one of the classic reinforcement learning methods, is capable of training bargaining players via self-play, a training paradigm used by AlphaGo, to maximum their profit. We also compare our empirical results with the known theoretic solutions and perform an comprehensive analysis upon their differences. To accomplish these, we come up with two policy updating methods used in the training process, namely alternate update and simultaneous update, which are tailored for two players who propose offers and counter-offers in an alternating manner under a time constraint enforced by the discount factors. Our experimental results have demonstrated that the values of the discount factor actually have tangible impact on how far the bargaining outcomes deviate from the game theoretic solutions.\",\"PeriodicalId\":101485,\"journal\":{\"name\":\"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609703.3609722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609703.3609722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强化学习算法已被用于博弈论中的策略发现。本研究探讨了经典的强化学习方法之一Q学习是否能够通过AlphaGo使用的一种训练范式——自我对弈(self-play)来训练讨价还价玩家,从而使他们的利润最大化。我们还将我们的实证结果与已知的理论解进行了比较,并对它们的差异进行了全面的分析。为了实现这一目标,我们提出了训练过程中使用的两种策略更新方法,即交替更新和同步更新,这两种方法是针对在折扣因素强制的时间约束下,以交替方式提出要约和还价的两个参与者量身定制的。我们的实验结果表明,贴现因子的值实际上对议价结果偏离博弈论解决方案的程度有切实的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Policy Updating Methods of Q Learning for Two Player Bargaining Game
Reinforcement learning algorithms have been used to discover the strategies in game theory. This study investigates whether Q learning, one of the classic reinforcement learning methods, is capable of training bargaining players via self-play, a training paradigm used by AlphaGo, to maximum their profit. We also compare our empirical results with the known theoretic solutions and perform an comprehensive analysis upon their differences. To accomplish these, we come up with two policy updating methods used in the training process, namely alternate update and simultaneous update, which are tailored for two players who propose offers and counter-offers in an alternating manner under a time constraint enforced by the discount factors. Our experimental results have demonstrated that the values of the discount factor actually have tangible impact on how far the bargaining outcomes deviate from the game theoretic solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification-Dissemination-Warning: Algorithm and Prediction of Early Warning of Network Public Opinion Exploration of transfer learning capability of multilingual models for text classification Reconstructing 3D Shapes as an Union of Boxes from Multi-View Images LLFormer: An Efficient and Real-time LiDAR Lane Detection Method based on Transformer Survey of the Formal Verification of Operating Systems in Power Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1