原子分解的半定规划方法的扩展

Hsiao-Han Chao, L. Vandenberghe
{"title":"原子分解的半定规划方法的扩展","authors":"Hsiao-Han Chao, L. Vandenberghe","doi":"10.1109/ICASSP.2016.7472580","DOIUrl":null,"url":null,"abstract":"We present an extension of recent semidefinite programming formulations for atomic decomposition over continuous dictionaries, with applications to continuous or `gridless' compressed sensing. The dictionary considered in this paper is defined in terms of a general matrix pencil and is parameterized by a complex variable that varies over a segment of a line or circle in the complex plane. The main result of the paper is the formulation as a convex semidefinite optimization problem, and a simple constructive proof of the equivalence. The techniques are illustrated with a direction of arrival estimation problem, and an example of low-rank structured matrix decomposition.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Extensions of semidefinite programming methods for atomic decomposition\",\"authors\":\"Hsiao-Han Chao, L. Vandenberghe\",\"doi\":\"10.1109/ICASSP.2016.7472580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an extension of recent semidefinite programming formulations for atomic decomposition over continuous dictionaries, with applications to continuous or `gridless' compressed sensing. The dictionary considered in this paper is defined in terms of a general matrix pencil and is parameterized by a complex variable that varies over a segment of a line or circle in the complex plane. The main result of the paper is the formulation as a convex semidefinite optimization problem, and a simple constructive proof of the equivalence. The techniques are illustrated with a direction of arrival estimation problem, and an example of low-rank structured matrix decomposition.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了在连续字典上原子分解的最新半定规划公式的扩展,并将其应用于连续或“无网格”压缩感知。本文所考虑的字典是用一般的矩阵铅笔来定义的,并由复平面上在直线或圆的一段上变化的复变量来参数化。本文的主要成果是将其表述为一个凸半定优化问题,并给出了等价性的简单构造证明。通过一个方向估计问题和一个低秩结构化矩阵分解的例子说明了该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extensions of semidefinite programming methods for atomic decomposition
We present an extension of recent semidefinite programming formulations for atomic decomposition over continuous dictionaries, with applications to continuous or `gridless' compressed sensing. The dictionary considered in this paper is defined in terms of a general matrix pencil and is parameterized by a complex variable that varies over a segment of a line or circle in the complex plane. The main result of the paper is the formulation as a convex semidefinite optimization problem, and a simple constructive proof of the equivalence. The techniques are illustrated with a direction of arrival estimation problem, and an example of low-rank structured matrix decomposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1