基于时空面部运动放大的深度人识别

K. Gkentsidis, Theodora Pistola, N. Mitianoudis, N. Boulgouris
{"title":"基于时空面部运动放大的深度人识别","authors":"K. Gkentsidis, Theodora Pistola, N. Mitianoudis, N. Boulgouris","doi":"10.1109/ICIP40778.2020.9191281","DOIUrl":null,"url":null,"abstract":"We explore the capabilities of a new biometric trait, which is based on information extracted through facial motion amplification. Unlike traditional facial biometric traits, the new biometric does not require the visibility of facial features, such as the eyes or nose, that are critical in common facial biometric algorithms. In this paper we propose the formation of a spatiotemporal facial blood flow map, constructed using small motion amplification. Experiments show that the proposed approach provides significant discriminatory capacity over different training and testing days and can be potentially used in situations where traditional facial biometrics may not be applicable.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Person Identification Using Spatiotemporal Facial Motion Amplification\",\"authors\":\"K. Gkentsidis, Theodora Pistola, N. Mitianoudis, N. Boulgouris\",\"doi\":\"10.1109/ICIP40778.2020.9191281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the capabilities of a new biometric trait, which is based on information extracted through facial motion amplification. Unlike traditional facial biometric traits, the new biometric does not require the visibility of facial features, such as the eyes or nose, that are critical in common facial biometric algorithms. In this paper we propose the formation of a spatiotemporal facial blood flow map, constructed using small motion amplification. Experiments show that the proposed approach provides significant discriminatory capacity over different training and testing days and can be potentially used in situations where traditional facial biometrics may not be applicable.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探索了一种新的生物特征的能力,这种特征是基于通过面部运动放大提取的信息。与传统的面部生物特征不同,新的生物特征不需要面部特征的可见性,比如眼睛或鼻子,而这些在常见的面部生物特征算法中是至关重要的。在本文中,我们提出了一个时空的面部血流图的形成,利用小运动放大构造。实验表明,该方法在不同的训练和测试日提供了显著的区分能力,可以潜在地用于传统面部生物识别技术可能不适用的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Person Identification Using Spatiotemporal Facial Motion Amplification
We explore the capabilities of a new biometric trait, which is based on information extracted through facial motion amplification. Unlike traditional facial biometric traits, the new biometric does not require the visibility of facial features, such as the eyes or nose, that are critical in common facial biometric algorithms. In this paper we propose the formation of a spatiotemporal facial blood flow map, constructed using small motion amplification. Experiments show that the proposed approach provides significant discriminatory capacity over different training and testing days and can be potentially used in situations where traditional facial biometrics may not be applicable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1