基于低复杂度神经分类器的Odiya数字高效识别

B. Majhi, J. Satpathy, M. Rout
{"title":"基于低复杂度神经分类器的Odiya数字高效识别","authors":"B. Majhi, J. Satpathy, M. Rout","doi":"10.1109/ICEAS.2011.6147094","DOIUrl":null,"url":null,"abstract":"The paper develops an efficient but simple adaptive nonlinear classifier for recognition of handwritten Odiya numerals. The standard gradient and curvature features are extracted and nonlinearly mapped by sine/cosine expansions. These nonlinear inputs are fed to a low complexity classifier. The simulation results show excellent classification accuracy when test features are used.","PeriodicalId":273164,"journal":{"name":"2011 International Conference on Energy, Automation and Signal","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Efficient recognition of Odiya numerals using low complexity neural classifier\",\"authors\":\"B. Majhi, J. Satpathy, M. Rout\",\"doi\":\"10.1109/ICEAS.2011.6147094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper develops an efficient but simple adaptive nonlinear classifier for recognition of handwritten Odiya numerals. The standard gradient and curvature features are extracted and nonlinearly mapped by sine/cosine expansions. These nonlinear inputs are fed to a low complexity classifier. The simulation results show excellent classification accuracy when test features are used.\",\"PeriodicalId\":273164,\"journal\":{\"name\":\"2011 International Conference on Energy, Automation and Signal\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Energy, Automation and Signal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAS.2011.6147094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Energy, Automation and Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAS.2011.6147094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文开发了一种高效而简单的自适应非线性分类器,用于手写体Odiya数字识别。提取标准梯度和曲率特征,并通过正弦/余弦展开进行非线性映射。这些非线性输入被馈送到一个低复杂度的分类器。仿真结果表明,在使用测试特征的情况下,该方法具有较好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient recognition of Odiya numerals using low complexity neural classifier
The paper develops an efficient but simple adaptive nonlinear classifier for recognition of handwritten Odiya numerals. The standard gradient and curvature features are extracted and nonlinearly mapped by sine/cosine expansions. These nonlinear inputs are fed to a low complexity classifier. The simulation results show excellent classification accuracy when test features are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EQU-IITG: A multi-format formal equivalence checker Low power, dynamically reconfigurable, memoryless systolic array based architecture for Viterbi decoder Model reduction of linear interval systems using Kharitonov's polynomials An MIWO based approach of power system transient stability enhancement with STATCOM Energy efficiency invariance laws acting in the field of multiphase AC inverter drives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1