利用机器学习改进深度相机的距离信息

Che-Cheng Chang, Kuan-Chang Shih, Hung-Che Ting, Yi-Syuan Su
{"title":"利用机器学习改进深度相机的距离信息","authors":"Che-Cheng Chang, Kuan-Chang Shih, Hung-Che Ting, Yi-Syuan Su","doi":"10.1109/ECICE52819.2021.9645639","DOIUrl":null,"url":null,"abstract":"A depth camera provides distance information. However, in the real environment, uncertain measurement conditions may bring incorrect distance information, e.g., environmental conditions, hardware component tolerances, and so on. Thus, we may always obtain unstable and inaccurate information. On the other hand, even sensors with the same specification are used in the experiment, we may obtain different information as well. Therefore, in this work, we intend to solve this issue by incorporating some machine learning approaches in the real environment to improve accuracy and stability. Particularly, we use the concept of machine learning for overall consideration instead of a particular statistics model to evaluate the uncertainty.","PeriodicalId":176225,"journal":{"name":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Utilizing Machine Learning to Improve the Distance Information from Depth Camera\",\"authors\":\"Che-Cheng Chang, Kuan-Chang Shih, Hung-Che Ting, Yi-Syuan Su\",\"doi\":\"10.1109/ECICE52819.2021.9645639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A depth camera provides distance information. However, in the real environment, uncertain measurement conditions may bring incorrect distance information, e.g., environmental conditions, hardware component tolerances, and so on. Thus, we may always obtain unstable and inaccurate information. On the other hand, even sensors with the same specification are used in the experiment, we may obtain different information as well. Therefore, in this work, we intend to solve this issue by incorporating some machine learning approaches in the real environment to improve accuracy and stability. Particularly, we use the concept of machine learning for overall consideration instead of a particular statistics model to evaluate the uncertainty.\",\"PeriodicalId\":176225,\"journal\":{\"name\":\"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECICE52819.2021.9645639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE52819.2021.9645639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

深度相机提供距离信息。然而,在实际环境中,不确定的测量条件可能会带来不正确的距离信息,如环境条件、硬件部件公差等。因此,我们可能总是获得不稳定和不准确的信息。另一方面,即使在实验中使用相同规格的传感器,我们也可能得到不同的信息。因此,在这项工作中,我们打算通过在真实环境中结合一些机器学习方法来解决这个问题,以提高准确性和稳定性。特别是,我们使用机器学习的概念进行整体考虑,而不是使用特定的统计模型来评估不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utilizing Machine Learning to Improve the Distance Information from Depth Camera
A depth camera provides distance information. However, in the real environment, uncertain measurement conditions may bring incorrect distance information, e.g., environmental conditions, hardware component tolerances, and so on. Thus, we may always obtain unstable and inaccurate information. On the other hand, even sensors with the same specification are used in the experiment, we may obtain different information as well. Therefore, in this work, we intend to solve this issue by incorporating some machine learning approaches in the real environment to improve accuracy and stability. Particularly, we use the concept of machine learning for overall consideration instead of a particular statistics model to evaluate the uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Demonstration of 128QAM-OFDM Encoded Terahertz Signals over 20-km SMF Evaluation of Learning Effectiveness Using Mobile Communication and Reality Technology to Assist Teaching: A Case of Island Ecological Teaching [ECICE 2021 Front matter] Application of Time-series Smoothed Excitation CNN Model Study on Humidity Status Fuzzy Estimation of Low-power PEMFC Stack Based on the Softsensing Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1