{"title":"基于方向浮雕和支持向量机的计算机断层图像肾结石识别与提取","authors":"Akanksha Soni, Avinash Rai","doi":"10.1109/MPCIT51588.2020.9350388","DOIUrl":null,"url":null,"abstract":"The kidneys are a pair of fist-structured organs placed beneath the rib cage. Kidneys function is indispensable to having a healthful body. Kidney disorder happens when it cannot execute its role and can lead to other health predicaments, including puny bones, nerve damage, and malnutrition. If the disease gets worse then kidneys may stop functioning totally and it may cause lethal if left untreated. Kidney disorder may also occur because of stone formation, malignancy, congenital anomalies, blockage of the urinary system, etc. The existence of stone in the kidney called Nephrolithiasis and it is a tremendously painful disorder. For surgical operations, it is incredibly essential to foresee the exact place of tumors in the kidney. The CT scan pictures have poor contrast and also contain noise; this creates complications for recognizing kidney abnormalities manually. So, there is a must wanted an accurate and intelligent system to foresee the stone automatically; it will be really advantageous for necessary treatment. The prime intention of this effort is to develop an automatic stone detection system from the CT picture. A learning model-Support Vector Machine is a proficient algorithm for classifying stone. It classifies the vector space of stone affected & normal kidneys into two separate districts. Before classifying the stone, the image may refer to some kind of improvements such as histogram equalization and Emboss that directionally calculates the differences in colors. Generally, existing approaches may deform the genuine information that degrades the accurateness of the system. The System obtained 98.71% accuracy by testing 156 CT samples that have a stone or tumor as well as a healthful kidney.","PeriodicalId":136514,"journal":{"name":"2020 Third International Conference on Multimedia Processing, Communication & Information Technology (MPCIT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Kidney Stone Recognition and Extraction using Directional Emboss & SVM from Computed Tomography Images\",\"authors\":\"Akanksha Soni, Avinash Rai\",\"doi\":\"10.1109/MPCIT51588.2020.9350388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The kidneys are a pair of fist-structured organs placed beneath the rib cage. Kidneys function is indispensable to having a healthful body. Kidney disorder happens when it cannot execute its role and can lead to other health predicaments, including puny bones, nerve damage, and malnutrition. If the disease gets worse then kidneys may stop functioning totally and it may cause lethal if left untreated. Kidney disorder may also occur because of stone formation, malignancy, congenital anomalies, blockage of the urinary system, etc. The existence of stone in the kidney called Nephrolithiasis and it is a tremendously painful disorder. For surgical operations, it is incredibly essential to foresee the exact place of tumors in the kidney. The CT scan pictures have poor contrast and also contain noise; this creates complications for recognizing kidney abnormalities manually. So, there is a must wanted an accurate and intelligent system to foresee the stone automatically; it will be really advantageous for necessary treatment. The prime intention of this effort is to develop an automatic stone detection system from the CT picture. A learning model-Support Vector Machine is a proficient algorithm for classifying stone. It classifies the vector space of stone affected & normal kidneys into two separate districts. Before classifying the stone, the image may refer to some kind of improvements such as histogram equalization and Emboss that directionally calculates the differences in colors. Generally, existing approaches may deform the genuine information that degrades the accurateness of the system. The System obtained 98.71% accuracy by testing 156 CT samples that have a stone or tumor as well as a healthful kidney.\",\"PeriodicalId\":136514,\"journal\":{\"name\":\"2020 Third International Conference on Multimedia Processing, Communication & Information Technology (MPCIT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Third International Conference on Multimedia Processing, Communication & Information Technology (MPCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MPCIT51588.2020.9350388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Third International Conference on Multimedia Processing, Communication & Information Technology (MPCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MPCIT51588.2020.9350388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kidney Stone Recognition and Extraction using Directional Emboss & SVM from Computed Tomography Images
The kidneys are a pair of fist-structured organs placed beneath the rib cage. Kidneys function is indispensable to having a healthful body. Kidney disorder happens when it cannot execute its role and can lead to other health predicaments, including puny bones, nerve damage, and malnutrition. If the disease gets worse then kidneys may stop functioning totally and it may cause lethal if left untreated. Kidney disorder may also occur because of stone formation, malignancy, congenital anomalies, blockage of the urinary system, etc. The existence of stone in the kidney called Nephrolithiasis and it is a tremendously painful disorder. For surgical operations, it is incredibly essential to foresee the exact place of tumors in the kidney. The CT scan pictures have poor contrast and also contain noise; this creates complications for recognizing kidney abnormalities manually. So, there is a must wanted an accurate and intelligent system to foresee the stone automatically; it will be really advantageous for necessary treatment. The prime intention of this effort is to develop an automatic stone detection system from the CT picture. A learning model-Support Vector Machine is a proficient algorithm for classifying stone. It classifies the vector space of stone affected & normal kidneys into two separate districts. Before classifying the stone, the image may refer to some kind of improvements such as histogram equalization and Emboss that directionally calculates the differences in colors. Generally, existing approaches may deform the genuine information that degrades the accurateness of the system. The System obtained 98.71% accuracy by testing 156 CT samples that have a stone or tumor as well as a healthful kidney.