{"title":"分布式开关微波器件协同设计的新方法","authors":"R. Allanic, Y. Quéré, D. Le Berre, C. Quendo","doi":"10.1109/APMC.2016.7931369","DOIUrl":null,"url":null,"abstract":"This paper deals with a novel approach to co-design a microstrip line associated with a distributed PIN switch in a semiconductor substrate. An High-Resistivity Silicon (HR-Si) substrate was chosen to optimize the trade-off between semiconductor effects and microwave propagation. Indeed, thanks to this particular substrate, the novel co-design concept is illustrated by an integrated and distributed switch based on an N+PP+ junction. This concept offers great flexibility in the design of tunable microwave devices. Moreover, applied to tunable distributed systems (antennas, filters, etc) in planar technology, it makes it possible to avoid the need for reported components or metalized holes. The coupling between semiconductors and microwave devices is taken into account thanks to a new co-design flow. Two demonstrators, with switchable doped microstrip lines, are manufactured and measured to validate the approach. The performances achieved in terms of insertion losses (IL) and isolation (Iso) were lower than 2.8 dB and higher than 40 dB, respectively, over the whole frequency band under consideration (from DC to 20 GHz).","PeriodicalId":166478,"journal":{"name":"2016 Asia-Pacific Microwave Conference (APMC)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A novel approach to co-design microwave devices with distributed switches\",\"authors\":\"R. Allanic, Y. Quéré, D. Le Berre, C. Quendo\",\"doi\":\"10.1109/APMC.2016.7931369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a novel approach to co-design a microstrip line associated with a distributed PIN switch in a semiconductor substrate. An High-Resistivity Silicon (HR-Si) substrate was chosen to optimize the trade-off between semiconductor effects and microwave propagation. Indeed, thanks to this particular substrate, the novel co-design concept is illustrated by an integrated and distributed switch based on an N+PP+ junction. This concept offers great flexibility in the design of tunable microwave devices. Moreover, applied to tunable distributed systems (antennas, filters, etc) in planar technology, it makes it possible to avoid the need for reported components or metalized holes. The coupling between semiconductors and microwave devices is taken into account thanks to a new co-design flow. Two demonstrators, with switchable doped microstrip lines, are manufactured and measured to validate the approach. The performances achieved in terms of insertion losses (IL) and isolation (Iso) were lower than 2.8 dB and higher than 40 dB, respectively, over the whole frequency band under consideration (from DC to 20 GHz).\",\"PeriodicalId\":166478,\"journal\":{\"name\":\"2016 Asia-Pacific Microwave Conference (APMC)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Microwave Conference (APMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APMC.2016.7931369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Microwave Conference (APMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APMC.2016.7931369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel approach to co-design microwave devices with distributed switches
This paper deals with a novel approach to co-design a microstrip line associated with a distributed PIN switch in a semiconductor substrate. An High-Resistivity Silicon (HR-Si) substrate was chosen to optimize the trade-off between semiconductor effects and microwave propagation. Indeed, thanks to this particular substrate, the novel co-design concept is illustrated by an integrated and distributed switch based on an N+PP+ junction. This concept offers great flexibility in the design of tunable microwave devices. Moreover, applied to tunable distributed systems (antennas, filters, etc) in planar technology, it makes it possible to avoid the need for reported components or metalized holes. The coupling between semiconductors and microwave devices is taken into account thanks to a new co-design flow. Two demonstrators, with switchable doped microstrip lines, are manufactured and measured to validate the approach. The performances achieved in terms of insertion losses (IL) and isolation (Iso) were lower than 2.8 dB and higher than 40 dB, respectively, over the whole frequency band under consideration (from DC to 20 GHz).