一个基于ILI的程序,可以防止工业中出现的ILI后故障的再次发生

Terry Huang, S. Kariyawasam
{"title":"一个基于ILI的程序,可以防止工业中出现的ILI后故障的再次发生","authors":"Terry Huang, S. Kariyawasam","doi":"10.1115/IPC2018-78604","DOIUrl":null,"url":null,"abstract":"The pipeline industry has been using Inline Inspection (ILI) since the 1970s. High resolution tools have been available for inspecting corrosion from about the 1980s and related ILI-based programs have been evolving. In this study incident rate data from the last 30 to 40 years of experience was examined and trended.\n Corrosion related incident rates have reduced where ILI programs have been implemented. Significant changes in programs have shown related incident reductions or positive trends. Throughout this time there have been a few post-ILI incidents and by taking a closer look at these incidents and learning from the findings the ILI-based assessments and programs were further improved.\n In this study, all of the post-ILI corrosion related ruptures on the TransCanada system have been closely examined and trended. The effects of program changes and related changes to performance indicators have been examined. Some significant industry failures, where data is publicly available, have also been examined. These failures have been analyzed and trended to understand significant commonalities between these failures.\n Data was analyzed with the intention of learning from them and applying this learning to avoid similar failures in the future. By understanding the uncertainties, technology limitations, and limits of applicability as well as the types of programs used and where these have not identified probable failures practical solutions were derived. All of the failures have been examined (as allowed by the data available) to find approaches which would have proactively identified these events, so that similar events can be avoided in the future.\n ILI tools generate a wealth of information and appropriate use of this information has shown to be effective in managing pipelines. However, it is also important to understand the limitations of technologies, learn from the failures, and acknowledge uncertainties so that undesirable events can be avoided.","PeriodicalId":273758,"journal":{"name":"Volume 1: Pipeline and Facilities Integrity","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ILI Based Program That Prevents Reoccurrence of Post ILI Failures Seen in Industry\",\"authors\":\"Terry Huang, S. Kariyawasam\",\"doi\":\"10.1115/IPC2018-78604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pipeline industry has been using Inline Inspection (ILI) since the 1970s. High resolution tools have been available for inspecting corrosion from about the 1980s and related ILI-based programs have been evolving. In this study incident rate data from the last 30 to 40 years of experience was examined and trended.\\n Corrosion related incident rates have reduced where ILI programs have been implemented. Significant changes in programs have shown related incident reductions or positive trends. Throughout this time there have been a few post-ILI incidents and by taking a closer look at these incidents and learning from the findings the ILI-based assessments and programs were further improved.\\n In this study, all of the post-ILI corrosion related ruptures on the TransCanada system have been closely examined and trended. The effects of program changes and related changes to performance indicators have been examined. Some significant industry failures, where data is publicly available, have also been examined. These failures have been analyzed and trended to understand significant commonalities between these failures.\\n Data was analyzed with the intention of learning from them and applying this learning to avoid similar failures in the future. By understanding the uncertainties, technology limitations, and limits of applicability as well as the types of programs used and where these have not identified probable failures practical solutions were derived. All of the failures have been examined (as allowed by the data available) to find approaches which would have proactively identified these events, so that similar events can be avoided in the future.\\n ILI tools generate a wealth of information and appropriate use of this information has shown to be effective in managing pipelines. However, it is also important to understand the limitations of technologies, learn from the failures, and acknowledge uncertainties so that undesirable events can be avoided.\",\"PeriodicalId\":273758,\"journal\":{\"name\":\"Volume 1: Pipeline and Facilities Integrity\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Pipeline and Facilities Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IPC2018-78604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Pipeline and Facilities Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自20世纪70年代以来,管道行业一直在使用在线检测(ILI)。自20世纪80年代以来,高分辨率的腐蚀检测工具已经出现,相关的基于i的程序也在不断发展。在这项研究中,对过去30至40年的发病率数据进行了检查和趋势分析。在实施ILI项目的地区,与腐蚀相关的事故率有所降低。项目的重大变化显示出相关事件的减少或积极的趋势。在此期间,发生了一些ili后事件,通过仔细研究这些事件并从调查结果中学习,基于ili的评估和方案得到了进一步改进。在本研究中,我们仔细研究了TransCanada系统中所有ili后腐蚀相关的破裂,并对其进行了趋势分析。对项目变更和相关变更对绩效指标的影响进行了研究。此外,还对一些数据公开的重大行业失误进行了调查。对这些故障进行了分析并进行了趋势分析,以了解这些故障之间的重要共性。分析数据的目的是从中学习,并应用这种学习来避免未来类似的失败。通过了解不确定性、技术限制、适用性限制以及所使用的程序类型,以及这些未确定可能失效的地方,得出了实际的解决方案。已经检查了所有的故障(在现有数据允许的情况下),以找到能够主动识别这些事件的方法,以便将来可以避免类似的事件。ILI工具产生了丰富的信息,适当使用这些信息已被证明在管道管理中是有效的。然而,了解技术的局限性,从失败中学习,并承认不确定性,以避免不良事件也很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ILI Based Program That Prevents Reoccurrence of Post ILI Failures Seen in Industry
The pipeline industry has been using Inline Inspection (ILI) since the 1970s. High resolution tools have been available for inspecting corrosion from about the 1980s and related ILI-based programs have been evolving. In this study incident rate data from the last 30 to 40 years of experience was examined and trended. Corrosion related incident rates have reduced where ILI programs have been implemented. Significant changes in programs have shown related incident reductions or positive trends. Throughout this time there have been a few post-ILI incidents and by taking a closer look at these incidents and learning from the findings the ILI-based assessments and programs were further improved. In this study, all of the post-ILI corrosion related ruptures on the TransCanada system have been closely examined and trended. The effects of program changes and related changes to performance indicators have been examined. Some significant industry failures, where data is publicly available, have also been examined. These failures have been analyzed and trended to understand significant commonalities between these failures. Data was analyzed with the intention of learning from them and applying this learning to avoid similar failures in the future. By understanding the uncertainties, technology limitations, and limits of applicability as well as the types of programs used and where these have not identified probable failures practical solutions were derived. All of the failures have been examined (as allowed by the data available) to find approaches which would have proactively identified these events, so that similar events can be avoided in the future. ILI tools generate a wealth of information and appropriate use of this information has shown to be effective in managing pipelines. However, it is also important to understand the limitations of technologies, learn from the failures, and acknowledge uncertainties so that undesirable events can be avoided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Noise Filtering Techniques for the Quantification of Uncertainty in Dent Strain Calculations The Impact of Pressure Fluctuations on the Early Onset of Stage II Growth of High pH Stress Corrosion Crack A Data Driven Validation of a Defect Assessment Model and its Safe Implementation Microwave Chipless Resonator Strain Sensor for Pipeline Safety Monitoring Full-Scale Fatigue Testing of Crack-in-Dent and Framework Development for Life Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1