使用英特尔的FPGA OpenCL™SDK创建高性能应用程序

A. Ling, U. Aydonat, Shane O'Connell, D. Capalija, Gordon R. Chiu
{"title":"使用英特尔的FPGA OpenCL™SDK创建高性能应用程序","authors":"A. Ling, U. Aydonat, Shane O'Connell, D. Capalija, Gordon R. Chiu","doi":"10.1145/3078155.3078169","DOIUrl":null,"url":null,"abstract":"After decades of research, High-Level Synthesis has finally caught on as a mainstream design technique for FPGAs. However, achieving performance results that are comparable to designing at a hardware description level still remains a challenge. In this talk, we illustrate how we achieve world class performance results on HPC applications by using OpenCL. Specifically, we show how we achieve 1Tflop of performance on a matrix multiply and over 1.3Tflops on a CNN application, run on Intel's 20nm Arria 10 FPGA device. By leveraging specific coding styles, we show how you can achieve peak performance on the FPGA without having to resort to tedious hardware design languages. Finally, we will describe spatial coding techniques that lead to efficient structures, such as systolic-arrays, to ensure that the FPGA runs efficiently.","PeriodicalId":267581,"journal":{"name":"Proceedings of the 5th International Workshop on OpenCL","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Creating High Performance Applications with Intel's FPGA OpenCL™ SDK\",\"authors\":\"A. Ling, U. Aydonat, Shane O'Connell, D. Capalija, Gordon R. Chiu\",\"doi\":\"10.1145/3078155.3078169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"After decades of research, High-Level Synthesis has finally caught on as a mainstream design technique for FPGAs. However, achieving performance results that are comparable to designing at a hardware description level still remains a challenge. In this talk, we illustrate how we achieve world class performance results on HPC applications by using OpenCL. Specifically, we show how we achieve 1Tflop of performance on a matrix multiply and over 1.3Tflops on a CNN application, run on Intel's 20nm Arria 10 FPGA device. By leveraging specific coding styles, we show how you can achieve peak performance on the FPGA without having to resort to tedious hardware design languages. Finally, we will describe spatial coding techniques that lead to efficient structures, such as systolic-arrays, to ensure that the FPGA runs efficiently.\",\"PeriodicalId\":267581,\"journal\":{\"name\":\"Proceedings of the 5th International Workshop on OpenCL\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Workshop on OpenCL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3078155.3078169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078155.3078169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

经过几十年的研究,高水平综合最终成为fpga的主流设计技术。然而,实现与硬件描述级设计相当的性能结果仍然是一个挑战。在本次演讲中,我们将演示如何使用OpenCL在高性能计算应用程序上实现世界级的性能结果。具体来说,我们展示了如何在矩阵乘法上实现1Tflop的性能,并在CNN应用程序上实现超过1.3 tflop的性能,在英特尔的20nm Arria 10 FPGA器件上运行。通过利用特定的编码风格,我们展示了如何在FPGA上实现峰值性能,而不必诉诸繁琐的硬件设计语言。最后,我们将描述导致高效结构的空间编码技术,如收缩阵列,以确保FPGA高效运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Creating High Performance Applications with Intel's FPGA OpenCL™ SDK
After decades of research, High-Level Synthesis has finally caught on as a mainstream design technique for FPGAs. However, achieving performance results that are comparable to designing at a hardware description level still remains a challenge. In this talk, we illustrate how we achieve world class performance results on HPC applications by using OpenCL. Specifically, we show how we achieve 1Tflop of performance on a matrix multiply and over 1.3Tflops on a CNN application, run on Intel's 20nm Arria 10 FPGA device. By leveraging specific coding styles, we show how you can achieve peak performance on the FPGA without having to resort to tedious hardware design languages. Finally, we will describe spatial coding techniques that lead to efficient structures, such as systolic-arrays, to ensure that the FPGA runs efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavefront Parallel Processing on GPUs with an Application to Video Encoding Algorithms Modeling Explicit SIMD Programming With Subgroup Functions OpenCL Interoperability with OpenVX Graphs Challenges and Opportunities in Native GPU Debugging OpenCL in Scientific High Performance Computing: The Good, the Bad, and the Ugly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1