探索历史人物社会网络的计算Len

Junjie Huang, Tiejian Luo
{"title":"探索历史人物社会网络的计算Len","authors":"Junjie Huang, Tiejian Luo","doi":"10.1109/w-ficloud.2018.00021","DOIUrl":null,"url":null,"abstract":"A typical social research topic is to figure out the influential people's relationship and its weights. It is very tedious for social scientists to solve those problems by studying massive literature. Digital humanities bring a new way to a social subject. In this paper, we propose a framework for social scientists to find out ancient figures'power and their camp. The core of our framework consists of signed graph model and novel group partition algorithm. We validate and verify our solution by China Biographical Database Project (CBDB) dataset. The analytic results on a case study demonstrate the effectiveness of our framework, which gets information that consists with the literature's facts and social scientists' viewpoints.","PeriodicalId":218683,"journal":{"name":"2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computing Len for Exploring the Historical People's Social Network\",\"authors\":\"Junjie Huang, Tiejian Luo\",\"doi\":\"10.1109/w-ficloud.2018.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A typical social research topic is to figure out the influential people's relationship and its weights. It is very tedious for social scientists to solve those problems by studying massive literature. Digital humanities bring a new way to a social subject. In this paper, we propose a framework for social scientists to find out ancient figures'power and their camp. The core of our framework consists of signed graph model and novel group partition algorithm. We validate and verify our solution by China Biographical Database Project (CBDB) dataset. The analytic results on a case study demonstrate the effectiveness of our framework, which gets information that consists with the literature's facts and social scientists' viewpoints.\",\"PeriodicalId\":218683,\"journal\":{\"name\":\"2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/w-ficloud.2018.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/w-ficloud.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

一个典型的社会研究课题是找出有影响力的人的关系及其权重。对于社会科学家来说,通过研究大量文献来解决这些问题是非常繁琐的。数字人文学科为一门社会学科带来了新的途径。在本文中,我们提出了一个框架,为社会科学家发现古代人物的权力和他们的阵营。该框架的核心是签名图模型和新的群划分算法。我们用中国传记数据库项目(CBDB)的数据集验证了我们的解决方案。一个案例研究的分析结果证明了我们的框架的有效性,它得到的信息与文献的事实和社会科学家的观点相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing Len for Exploring the Historical People's Social Network
A typical social research topic is to figure out the influential people's relationship and its weights. It is very tedious for social scientists to solve those problems by studying massive literature. Digital humanities bring a new way to a social subject. In this paper, we propose a framework for social scientists to find out ancient figures'power and their camp. The core of our framework consists of signed graph model and novel group partition algorithm. We validate and verify our solution by China Biographical Database Project (CBDB) dataset. The analytic results on a case study demonstrate the effectiveness of our framework, which gets information that consists with the literature's facts and social scientists' viewpoints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Battling the Fear of Public Speaking: Designing Software as a Service Solution for a Virtual Reality Therapy Study of Rule Placement Schemes for Minimizing TCAM Space and Effective Bandwidth Utilization in SDN A Proxy-Based Query Aggregation Method for Distributed Key-Value Stores Social Engineering: Application of Psychology to Information Security Design and Implementation of a Mobile Device for Blood Glucose Level Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1