利用最大平均差异理解反事实生成

Wei Zhang, Brian Barr, J. Paisley
{"title":"利用最大平均差异理解反事实生成","authors":"Wei Zhang, Brian Barr, J. Paisley","doi":"10.1145/3533271.3561759","DOIUrl":null,"url":null,"abstract":"With the dramatic development of deep learning in the past decade, interpretability has been one of the most important challenges that often prevents neural networks from being applied to fields such as finance. Among many existing explainable analyses, counterfactual generation has become widely used for understanding neural networks and making tailored recommendations. However, few studies are devoted to providing quantitative measures for evaluating counterfactuals. In this paper, we propose a quantitative approach based on maximum mean discrepancy (MMD). We employ several existing counterfactual methods to demonstrate this proposed method on the MNIST image data set and two tabular financial data sets, Lending Club (LCD) and Give Me Some Credit (GMC). The results demonstrate the potential usefulness as well as the simplicity of the proposed method.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Understanding Counterfactual Generation using Maximum Mean Discrepancy\",\"authors\":\"Wei Zhang, Brian Barr, J. Paisley\",\"doi\":\"10.1145/3533271.3561759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the dramatic development of deep learning in the past decade, interpretability has been one of the most important challenges that often prevents neural networks from being applied to fields such as finance. Among many existing explainable analyses, counterfactual generation has become widely used for understanding neural networks and making tailored recommendations. However, few studies are devoted to providing quantitative measures for evaluating counterfactuals. In this paper, we propose a quantitative approach based on maximum mean discrepancy (MMD). We employ several existing counterfactual methods to demonstrate this proposed method on the MNIST image data set and two tabular financial data sets, Lending Club (LCD) and Give Me Some Credit (GMC). The results demonstrate the potential usefulness as well as the simplicity of the proposed method.\",\"PeriodicalId\":134888,\"journal\":{\"name\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533271.3561759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着过去十年深度学习的迅猛发展,可解释性一直是阻碍神经网络应用于金融等领域的最重要挑战之一。在许多现有的可解释分析中,反事实生成已被广泛用于理解神经网络并提出量身定制的建议。然而,很少有研究致力于提供定量的方法来评估反事实。在本文中,我们提出了一种基于最大平均差异(MMD)的定量方法。我们采用了几种现有的反事实方法,在MNIST图像数据集和两个表格金融数据集,Lending Club (LCD)和Give Me Some Credit (GMC)上验证了该方法。结果表明,该方法具有潜在的实用性和简单性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Counterfactual Generation using Maximum Mean Discrepancy
With the dramatic development of deep learning in the past decade, interpretability has been one of the most important challenges that often prevents neural networks from being applied to fields such as finance. Among many existing explainable analyses, counterfactual generation has become widely used for understanding neural networks and making tailored recommendations. However, few studies are devoted to providing quantitative measures for evaluating counterfactuals. In this paper, we propose a quantitative approach based on maximum mean discrepancy (MMD). We employ several existing counterfactual methods to demonstrate this proposed method on the MNIST image data set and two tabular financial data sets, Lending Club (LCD) and Give Me Some Credit (GMC). The results demonstrate the potential usefulness as well as the simplicity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Core Matrix Regression and Prediction with Regularization Risk-Aware Linear Bandits with Application in Smart Order Routing Addressing Extreme Market Responses Using Secure Aggregation Addressing Non-Stationarity in FX Trading with Online Model Selection of Offline RL Experts Objective Driven Portfolio Construction Using Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1