{"title":"相量测量装置锁相环用宽量程高摆幅电荷泵","authors":"Motahhareh Estebsari, A. Estebsari","doi":"10.1109/EEEIC.2019.8783750","DOIUrl":null,"url":null,"abstract":"Phasor Measurement Units are widely utilized in power systems to provide synchrophasor data for a verity of applications, mainly performed by Energy Management Systems (EMS). Synchrophasors are measured at different parts of the network and transmitted to Phasor Data Concentrator (PDC) at a rate of 30–60 samples per second. The synchronization is done by means of a phase locked oscillator inside PMU which uses clock signal of the Global Positioning System (GPS). In this paper a novel charge pump with an appropriate operation capability in phaselocked-loops is presented. By using this phase locked loop in phasor measurement unit, the total performance of this circuit will be improved. The proposed charge pump uses current mirror techniques in order to achieve a wide range of output voltage to control the oscillator and also has a good performance in a wide frequency range from 33MHz to 555MHz. This circuit is designed and simulated in TSMC 0.18µm CMOS technology. The proposed charge pump only consumes 390µW power in supply voltage of 1.8V at 500MHz and has a maximum current of 16.43µA with an acceptable current matching between source and sink currents. It is also capable to be used in a wide frequency range and low power applications.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Wide Range and High Swing Charge Pump for Phase Locked Loop in Phasor Measurement Unit\",\"authors\":\"Motahhareh Estebsari, A. Estebsari\",\"doi\":\"10.1109/EEEIC.2019.8783750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phasor Measurement Units are widely utilized in power systems to provide synchrophasor data for a verity of applications, mainly performed by Energy Management Systems (EMS). Synchrophasors are measured at different parts of the network and transmitted to Phasor Data Concentrator (PDC) at a rate of 30–60 samples per second. The synchronization is done by means of a phase locked oscillator inside PMU which uses clock signal of the Global Positioning System (GPS). In this paper a novel charge pump with an appropriate operation capability in phaselocked-loops is presented. By using this phase locked loop in phasor measurement unit, the total performance of this circuit will be improved. The proposed charge pump uses current mirror techniques in order to achieve a wide range of output voltage to control the oscillator and also has a good performance in a wide frequency range from 33MHz to 555MHz. This circuit is designed and simulated in TSMC 0.18µm CMOS technology. The proposed charge pump only consumes 390µW power in supply voltage of 1.8V at 500MHz and has a maximum current of 16.43µA with an acceptable current matching between source and sink currents. It is also capable to be used in a wide frequency range and low power applications.\",\"PeriodicalId\":422977,\"journal\":{\"name\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2019.8783750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2019.8783750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相量测量单元广泛应用于电力系统中,为各种应用提供同步相量数据,主要由能源管理系统(EMS)执行。同步相量在网络的不同部分测量,并以每秒30-60个样本的速率传输到相量数据集中器(PDC)。同步是通过PMU内部的锁相振荡器实现的,锁相振荡器利用全球定位系统(GPS)的时钟信号进行同步。本文提出了一种在锁相环中具有良好工作能力的新型电荷泵。在相量测量单元中使用锁相环,可以提高电路的总体性能。所提出的电荷泵采用电流镜像技术,以实现宽范围的输出电压来控制振荡器,并且在33MHz到555MHz的宽频率范围内也具有良好的性能。该电路采用台积电0.18µm CMOS工艺进行设计和仿真。该充电泵在供电电压为1.8V、工作频率为500MHz时仅消耗390µW功率,最大电流为16.43µa,源电流和汇聚电流之间的匹配可接受。它还能够用于宽频率范围和低功耗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Wide Range and High Swing Charge Pump for Phase Locked Loop in Phasor Measurement Unit
Phasor Measurement Units are widely utilized in power systems to provide synchrophasor data for a verity of applications, mainly performed by Energy Management Systems (EMS). Synchrophasors are measured at different parts of the network and transmitted to Phasor Data Concentrator (PDC) at a rate of 30–60 samples per second. The synchronization is done by means of a phase locked oscillator inside PMU which uses clock signal of the Global Positioning System (GPS). In this paper a novel charge pump with an appropriate operation capability in phaselocked-loops is presented. By using this phase locked loop in phasor measurement unit, the total performance of this circuit will be improved. The proposed charge pump uses current mirror techniques in order to achieve a wide range of output voltage to control the oscillator and also has a good performance in a wide frequency range from 33MHz to 555MHz. This circuit is designed and simulated in TSMC 0.18µm CMOS technology. The proposed charge pump only consumes 390µW power in supply voltage of 1.8V at 500MHz and has a maximum current of 16.43µA with an acceptable current matching between source and sink currents. It is also capable to be used in a wide frequency range and low power applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Development Process and User-centric Data Driven Design for an Integrated Energy System Machine Learning for Agile and Self-Adaptive Congestion Management in Active Distribution Networks Full Bridge LLC Resonant Three-Phase Interleaved Multi Converter For HV Applications Standalone PV-BES-DG Based Microgrid with Power Quality Improvements Performance of Neural Network Based Controllers and ΔΣ-Based PID Controllers for Networked Control Systems: A Comparative Investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1