自适应神经模糊推理系统优化的聚类方法比较

Sertug Fdan, B. Karasulu
{"title":"自适应神经模糊推理系统优化的聚类方法比较","authors":"Sertug Fdan, B. Karasulu","doi":"10.1109/SIU55565.2022.9864902","DOIUrl":null,"url":null,"abstract":"Different methods have been developed to optimize the Adaptive Neural Fuzzy Inference System, which is used in many fields due to its flexible structure and trainability. Within the scope of this study, three different models were produced using two different datasets, using only the first clustering method, only the second clustering method, and both the first and second clustering methods. In this study, the Fuzzy C-Mean Clustering algorithm, which is one of the most efficient methods used to reduce the number of rules in the rule base of the hybrid intelligent system is compared with the Highly Connected Subgraphs algorithm. The models were compared over the square root of the mean square error, the number of nodes, the number of fuzzy rules, and the mean training time. As a result of the study, the second clustering method formed the most efficient result in terms of error rate with 0.084 and 0,008. It has been observed that the average training time of this method is approximately 31 times longer than the first clustering method mentioned above, and approximately 52 times longer than the model in which the first and second clustering methods are used together. In this study, it has been seen that the first clustering method is more successful in reducing the rule base by optimizing the second method by determining more suitable cluster centers. Based on the experimental results obtained in our study, these two different clustering methods were compared over three different models. Discussion and scientific results are included in our study.","PeriodicalId":115446,"journal":{"name":"2022 30th Signal Processing and Communications Applications Conference (SIU)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering Methods Comparison for Optimization of Adaptive Neural Fuzzy Inference System\",\"authors\":\"Sertug Fdan, B. Karasulu\",\"doi\":\"10.1109/SIU55565.2022.9864902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different methods have been developed to optimize the Adaptive Neural Fuzzy Inference System, which is used in many fields due to its flexible structure and trainability. Within the scope of this study, three different models were produced using two different datasets, using only the first clustering method, only the second clustering method, and both the first and second clustering methods. In this study, the Fuzzy C-Mean Clustering algorithm, which is one of the most efficient methods used to reduce the number of rules in the rule base of the hybrid intelligent system is compared with the Highly Connected Subgraphs algorithm. The models were compared over the square root of the mean square error, the number of nodes, the number of fuzzy rules, and the mean training time. As a result of the study, the second clustering method formed the most efficient result in terms of error rate with 0.084 and 0,008. It has been observed that the average training time of this method is approximately 31 times longer than the first clustering method mentioned above, and approximately 52 times longer than the model in which the first and second clustering methods are used together. In this study, it has been seen that the first clustering method is more successful in reducing the rule base by optimizing the second method by determining more suitable cluster centers. Based on the experimental results obtained in our study, these two different clustering methods were compared over three different models. Discussion and scientific results are included in our study.\",\"PeriodicalId\":115446,\"journal\":{\"name\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU55565.2022.9864902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU55565.2022.9864902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自适应神经模糊推理系统由于其结构灵活、可训练性强等特点,在许多领域得到了广泛的应用。在本研究范围内,使用两个不同的数据集,仅使用第一聚类方法,仅使用第二聚类方法,以及同时使用第一和第二聚类方法,生成了三种不同的模型。本文将模糊c均值聚类算法作为减少混合智能系统规则库中规则数量的最有效方法之一,与高度连通子图算法进行了比较。通过均方误差的平方根、节点数、模糊规则数和平均训练时间对模型进行比较。研究结果表明,第二种聚类方法在错误率方面形成了最有效的结果,错误率分别为0.084和0.008。可以观察到,该方法的平均训练时间比上述第一种聚类方法长约31倍,比第一种和第二种聚类方法同时使用的模型长约52倍。在本研究中,通过确定更合适的聚类中心来优化第二种聚类方法,第一种聚类方法在减少规则库方面更成功。基于本研究的实验结果,在三种不同的模型上对这两种不同的聚类方法进行了比较。我们的研究包括讨论和科学成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering Methods Comparison for Optimization of Adaptive Neural Fuzzy Inference System
Different methods have been developed to optimize the Adaptive Neural Fuzzy Inference System, which is used in many fields due to its flexible structure and trainability. Within the scope of this study, three different models were produced using two different datasets, using only the first clustering method, only the second clustering method, and both the first and second clustering methods. In this study, the Fuzzy C-Mean Clustering algorithm, which is one of the most efficient methods used to reduce the number of rules in the rule base of the hybrid intelligent system is compared with the Highly Connected Subgraphs algorithm. The models were compared over the square root of the mean square error, the number of nodes, the number of fuzzy rules, and the mean training time. As a result of the study, the second clustering method formed the most efficient result in terms of error rate with 0.084 and 0,008. It has been observed that the average training time of this method is approximately 31 times longer than the first clustering method mentioned above, and approximately 52 times longer than the model in which the first and second clustering methods are used together. In this study, it has been seen that the first clustering method is more successful in reducing the rule base by optimizing the second method by determining more suitable cluster centers. Based on the experimental results obtained in our study, these two different clustering methods were compared over three different models. Discussion and scientific results are included in our study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Prediction with Peak-Aware Temporal Graph Convolutional Networks Artificial Neural Network Based Fault Diagnostic System for Wind Turbines Remaining Useful Life Prediction on C-MAPSS Dataset via Joint Autoencoder-Regression Architecture A New Fast Walsh Hadamard Transform Spread UW-Optical-OFDM Waveform Indoor Localization with Transfer Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1