{"title":"基于抽象意义表示的生物医学事件提取","authors":"Sudha Rao, D. Marcu, Kevin Knight, Hal Daumé","doi":"10.18653/v1/W17-2315","DOIUrl":null,"url":null,"abstract":"We propose a novel, Abstract Meaning Representation (AMR) based approach to identifying molecular events/interactions in biomedical text. Our key contributions are: (1) an empirical validation of our hypothesis that an event is a subgraph of the AMR graph, (2) a neural network-based model that identifies such an event subgraph given an AMR, and (3) a distant supervision based approach to gather additional training data. We evaluate our approach on the 2013 Genia Event Extraction dataset and show promising results.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":"{\"title\":\"Biomedical Event Extraction using Abstract Meaning Representation\",\"authors\":\"Sudha Rao, D. Marcu, Kevin Knight, Hal Daumé\",\"doi\":\"10.18653/v1/W17-2315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel, Abstract Meaning Representation (AMR) based approach to identifying molecular events/interactions in biomedical text. Our key contributions are: (1) an empirical validation of our hypothesis that an event is a subgraph of the AMR graph, (2) a neural network-based model that identifies such an event subgraph given an AMR, and (3) a distant supervision based approach to gather additional training data. We evaluate our approach on the 2013 Genia Event Extraction dataset and show promising results.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"76\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-2315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-2315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biomedical Event Extraction using Abstract Meaning Representation
We propose a novel, Abstract Meaning Representation (AMR) based approach to identifying molecular events/interactions in biomedical text. Our key contributions are: (1) an empirical validation of our hypothesis that an event is a subgraph of the AMR graph, (2) a neural network-based model that identifies such an event subgraph given an AMR, and (3) a distant supervision based approach to gather additional training data. We evaluate our approach on the 2013 Genia Event Extraction dataset and show promising results.