基于纹理数字孪生体构建的全球立体数字图像相关统一框架

Raphaël Fouque, R. Bouclier, J. Passieux, J. Perie
{"title":"基于纹理数字孪生体构建的全球立体数字图像相关统一框架","authors":"Raphaël Fouque, R. Bouclier, J. Passieux, J. Perie","doi":"10.46298/jtcam.7467","DOIUrl":null,"url":null,"abstract":"An innovative approach allowing to rigorously address surface curvature and lighting effects in Digital Image Correlation (DIC) is proposed. We draw inspiration from the research work in Computer Vision (CV) regarding the physical modelling of a camera and adopt it to bring novel and significant capabilities for full-field measurements in experimental solid mechanics. It gives rise to a unified framework for global stereo DIC that we call Photometric DIC (PhDIC). It is based on the irradiance equation that relies on physical considerations and explicit assumptions, which stands for a clear breakthrough compared to the usual grey level conservation assumption. Most importantly, it allows to define a Digital Twin of the Region of Interest, which makes it possible to compare a model with different observations (real images taken from different viewpoints). This results in a consistent formalism throughout the framework, suitable for large-deformation and large-strain displacement measurements. The potential of PhDIC is illustrated on a real case. Multi-view images are first used to measure (or scan) the shape and albedo (sometimes called intrinsic texture) of an open-hole plate. The kinematic basis considered for the displacement measurement is associated to a Finite-Element mesh. Results for the shape and albedo measurement are compared for two completely different sets of pictures. Eventually, a large displacement of the structure is measured using a well-chosen single image.","PeriodicalId":115014,"journal":{"name":"Journal of Theoretical, Computational and Applied Mechanics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Photometric DIC: a unified framework for global Stereo Digital Image Correlation based on the construction of textured digital twins\",\"authors\":\"Raphaël Fouque, R. Bouclier, J. Passieux, J. Perie\",\"doi\":\"10.46298/jtcam.7467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An innovative approach allowing to rigorously address surface curvature and lighting effects in Digital Image Correlation (DIC) is proposed. We draw inspiration from the research work in Computer Vision (CV) regarding the physical modelling of a camera and adopt it to bring novel and significant capabilities for full-field measurements in experimental solid mechanics. It gives rise to a unified framework for global stereo DIC that we call Photometric DIC (PhDIC). It is based on the irradiance equation that relies on physical considerations and explicit assumptions, which stands for a clear breakthrough compared to the usual grey level conservation assumption. Most importantly, it allows to define a Digital Twin of the Region of Interest, which makes it possible to compare a model with different observations (real images taken from different viewpoints). This results in a consistent formalism throughout the framework, suitable for large-deformation and large-strain displacement measurements. The potential of PhDIC is illustrated on a real case. Multi-view images are first used to measure (or scan) the shape and albedo (sometimes called intrinsic texture) of an open-hole plate. The kinematic basis considered for the displacement measurement is associated to a Finite-Element mesh. Results for the shape and albedo measurement are compared for two completely different sets of pictures. Eventually, a large displacement of the structure is measured using a well-chosen single image.\",\"PeriodicalId\":115014,\"journal\":{\"name\":\"Journal of Theoretical, Computational and Applied Mechanics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical, Computational and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/jtcam.7467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical, Computational and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jtcam.7467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种在数字图像相关(DIC)中严格处理表面曲率和光照效果的创新方法。我们从计算机视觉(CV)关于相机物理建模的研究工作中汲取灵感,并采用它为实验固体力学中的全场测量带来新颖而重要的能力。它产生了一个统一的全球立体DIC框架,我们称之为光度DIC (PhDIC)。它基于基于物理考虑和明确假设的辐照度方程,与通常的灰色守恒假设相比,这是一个明显的突破。最重要的是,它允许定义感兴趣区域的数字孪生,这使得将模型与不同的观察结果(从不同视点拍摄的真实图像)进行比较成为可能。这使得整个框架具有一致的形式,适用于大变形和大应变位移测量。通过一个实际案例说明了PhDIC的潜力。多视图图像首先用于测量(或扫描)开孔板的形状和反照率(有时称为内在纹理)。位移测量所考虑的运动学基础与有限元网格相关联。对两组完全不同的图像的形状和反照率测量结果进行了比较。最后,使用精心选择的单幅图像测量结构的大位移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photometric DIC: a unified framework for global Stereo Digital Image Correlation based on the construction of textured digital twins
An innovative approach allowing to rigorously address surface curvature and lighting effects in Digital Image Correlation (DIC) is proposed. We draw inspiration from the research work in Computer Vision (CV) regarding the physical modelling of a camera and adopt it to bring novel and significant capabilities for full-field measurements in experimental solid mechanics. It gives rise to a unified framework for global stereo DIC that we call Photometric DIC (PhDIC). It is based on the irradiance equation that relies on physical considerations and explicit assumptions, which stands for a clear breakthrough compared to the usual grey level conservation assumption. Most importantly, it allows to define a Digital Twin of the Region of Interest, which makes it possible to compare a model with different observations (real images taken from different viewpoints). This results in a consistent formalism throughout the framework, suitable for large-deformation and large-strain displacement measurements. The potential of PhDIC is illustrated on a real case. Multi-view images are first used to measure (or scan) the shape and albedo (sometimes called intrinsic texture) of an open-hole plate. The kinematic basis considered for the displacement measurement is associated to a Finite-Element mesh. Results for the shape and albedo measurement are compared for two completely different sets of pictures. Eventually, a large displacement of the structure is measured using a well-chosen single image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crack branching at low tip speeds: spilling the T The average conformation tensor of inter-atomic bonds as an alternative state variable to the strain tensor: definition and first application ś the case of nanoelasticity Reduced order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds Optimization of a dynamic absorber with nonlinear stiffness and damping for the vibration control of a floating offshore wind turbine toy model Plasticity and ductility of an anisotropic recrystallized AA2198 Al-Cu-Li alloy in T3 and T8 conditions during proportional and non-proportional loading paths: simulations and experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1