具有时变输出约束和避障的不确定欧拉-拉格朗日系统的神经自适应跟踪控制

Zhigang Zhou, Xinwei Chen, Ruifeng Li, Xiao‐Ning Shi, K. Wen
{"title":"具有时变输出约束和避障的不确定欧拉-拉格朗日系统的神经自适应跟踪控制","authors":"Zhigang Zhou, Xinwei Chen, Ruifeng Li, Xiao‐Ning Shi, K. Wen","doi":"10.23919/CCC50068.2020.9189526","DOIUrl":null,"url":null,"abstract":"This paper addresses the tracking control problem for uncertain Euler-Lagrange system with time-varying output constraints in an environment containing obstacles. First, a novel log-type attractive potential field is utilized to describe the trajectory tracking task with time-varying constraints, and a bounded artificial potential field is established to describe the obstacle avoidance task. Then, by incorporating the two artificial potential fields (APFs) into the dynamic surface control, a neuro-adaptive tracking control is designed for the uncertain Euler-Lagrange system, which can ensure the system to fulfill the trajectory track task within time-varying limit range while avoiding obstacles. Because the obstacle avoidance task has a higher priority, the proposed control scheme can also guarantee the obstacle avoiding task can be fulfilled first when it is conflicted with the trajectory tracking task. Numerical simulations are provided to demonstrate the efficacy of the control strategy.","PeriodicalId":255872,"journal":{"name":"2020 39th Chinese Control Conference (CCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuro-adaptive tracking control for uncertain Euler-Lagrange systems with time-varying output constraints and obstacle avoidance\",\"authors\":\"Zhigang Zhou, Xinwei Chen, Ruifeng Li, Xiao‐Ning Shi, K. Wen\",\"doi\":\"10.23919/CCC50068.2020.9189526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the tracking control problem for uncertain Euler-Lagrange system with time-varying output constraints in an environment containing obstacles. First, a novel log-type attractive potential field is utilized to describe the trajectory tracking task with time-varying constraints, and a bounded artificial potential field is established to describe the obstacle avoidance task. Then, by incorporating the two artificial potential fields (APFs) into the dynamic surface control, a neuro-adaptive tracking control is designed for the uncertain Euler-Lagrange system, which can ensure the system to fulfill the trajectory track task within time-varying limit range while avoiding obstacles. Because the obstacle avoidance task has a higher priority, the proposed control scheme can also guarantee the obstacle avoiding task can be fulfilled first when it is conflicted with the trajectory tracking task. Numerical simulations are provided to demonstrate the efficacy of the control strategy.\",\"PeriodicalId\":255872,\"journal\":{\"name\":\"2020 39th Chinese Control Conference (CCC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 39th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CCC50068.2020.9189526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CCC50068.2020.9189526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了含障碍物环境下具有时变输出约束的不确定欧拉-拉格朗日系统的跟踪控制问题。首先,利用对数型吸引势场描述具有时变约束的轨迹跟踪任务,建立有界人工势场描述避障任务。然后,将两个人工势场(apf)引入动态面控制中,设计了不确定欧拉-拉格朗日系统的神经自适应跟踪控制,保证系统在时变极限范围内完成轨迹跟踪任务,同时避开障碍物。由于避障任务具有较高的优先级,当避障任务与轨迹跟踪任务发生冲突时,所提控制方案还能保证避障任务优先完成。通过数值仿真验证了该控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuro-adaptive tracking control for uncertain Euler-Lagrange systems with time-varying output constraints and obstacle avoidance
This paper addresses the tracking control problem for uncertain Euler-Lagrange system with time-varying output constraints in an environment containing obstacles. First, a novel log-type attractive potential field is utilized to describe the trajectory tracking task with time-varying constraints, and a bounded artificial potential field is established to describe the obstacle avoidance task. Then, by incorporating the two artificial potential fields (APFs) into the dynamic surface control, a neuro-adaptive tracking control is designed for the uncertain Euler-Lagrange system, which can ensure the system to fulfill the trajectory track task within time-varying limit range while avoiding obstacles. Because the obstacle avoidance task has a higher priority, the proposed control scheme can also guarantee the obstacle avoiding task can be fulfilled first when it is conflicted with the trajectory tracking task. Numerical simulations are provided to demonstrate the efficacy of the control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Matrix-based Algorithm for the LS Design of Variable Fractional Delay FIR Filters with Constraints MPC Control and Simulation of a Mixed Recovery Dual Channel Closed-Loop Supply Chain with Lead Time Fractional-order ADRC framework for fractional-order parallel systems A Moving Target Tracking Control and Obstacle Avoidance of Quadrotor UAV Based on Sliding Mode Control Using Artificial Potential Field and RBF Neural Networks Finite-time Pinning Synchronization and Parameters Identification of Markovian Switching Complex Delayed Network with Stochastic Perturbations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1