同时多线程和硬实时:安全吗?

S. Osborne, James H. Anderson
{"title":"同时多线程和硬实时:安全吗?","authors":"S. Osborne, James H. Anderson","doi":"10.4230/LIPIcs.ECRTS.2020.14","DOIUrl":null,"url":null,"abstract":"The applicability of Simultaneous Multithreading (SMT) to real-time systems has been hampered by the difficulty of obtaining reliable execution costs in an SMT-enabled system. This problem is addressed by introducing a scheduling framework, called CERT-MT, that combines scheduling-aware timing analysis with a cyclic-executive scheduler in a way that minimizes SMT-related timing variations. The proposed scheduling-aware timing analysis is based on maximum observed execution times and accounts for the uncertainty inherent in measurement-based timing analysis. The timing analysis is found to work for tasks with and without SMT, though some adjustments are required in the former case. A large-scale schedulability study is presented that shows CERT-MT can schedule systems with total utilizations approaching 1.4 times the core count, without sacrificing safety. 2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer systems organization → Real-time system specification; Software and its engineering → Scheduling; Hardware → Statistical timing analysis; Software and its engineering → Multithreading","PeriodicalId":191379,"journal":{"name":"Euromicro Conference on Real-Time Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Simultaneous Multithreading and Hard Real Time: Can It Be Safe?\",\"authors\":\"S. Osborne, James H. Anderson\",\"doi\":\"10.4230/LIPIcs.ECRTS.2020.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The applicability of Simultaneous Multithreading (SMT) to real-time systems has been hampered by the difficulty of obtaining reliable execution costs in an SMT-enabled system. This problem is addressed by introducing a scheduling framework, called CERT-MT, that combines scheduling-aware timing analysis with a cyclic-executive scheduler in a way that minimizes SMT-related timing variations. The proposed scheduling-aware timing analysis is based on maximum observed execution times and accounts for the uncertainty inherent in measurement-based timing analysis. The timing analysis is found to work for tasks with and without SMT, though some adjustments are required in the former case. A large-scale schedulability study is presented that shows CERT-MT can schedule systems with total utilizations approaching 1.4 times the core count, without sacrificing safety. 2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer systems organization → Real-time system specification; Software and its engineering → Scheduling; Hardware → Statistical timing analysis; Software and its engineering → Multithreading\",\"PeriodicalId\":191379,\"journal\":{\"name\":\"Euromicro Conference on Real-Time Systems\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euromicro Conference on Real-Time Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ECRTS.2020.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euromicro Conference on Real-Time Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ECRTS.2020.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

同步多线程(SMT)在实时系统中的适用性一直受到在支持SMT的系统中难以获得可靠执行成本的阻碍。通过引入一个称为CERT-MT的调度框架来解决这个问题,该框架将调度感知的时序分析与循环执行调度程序结合在一起,以最小化与smt相关的时序变化。提出的调度感知时序分析基于最大观察到的执行时间,并考虑了基于测量的时序分析中固有的不确定性。发现时序分析适用于有和没有SMT的任务,尽管在前一种情况下需要进行一些调整。一项大规模的可调度性研究表明,CERT-MT可以调度总利用率接近核心数1.4倍的系统,而不会牺牲安全性。2012 ACM学科分类计算机系统组织→实时系统;计算机系统组织→实时系统规范;软件及其工程→调度;硬件→统计时序分析;软件及其工程→多线程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous Multithreading and Hard Real Time: Can It Be Safe?
The applicability of Simultaneous Multithreading (SMT) to real-time systems has been hampered by the difficulty of obtaining reliable execution costs in an SMT-enabled system. This problem is addressed by introducing a scheduling framework, called CERT-MT, that combines scheduling-aware timing analysis with a cyclic-executive scheduler in a way that minimizes SMT-related timing variations. The proposed scheduling-aware timing analysis is based on maximum observed execution times and accounts for the uncertainty inherent in measurement-based timing analysis. The timing analysis is found to work for tasks with and without SMT, though some adjustments are required in the former case. A large-scale schedulability study is presented that shows CERT-MT can schedule systems with total utilizations approaching 1.4 times the core count, without sacrificing safety. 2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer systems organization → Real-time system specification; Software and its engineering → Scheduling; Hardware → Statistical timing analysis; Software and its engineering → Multithreading
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Interference-Sensitive Run-time Adaptation of Time-Triggered Schedules Attack Detection Through Monitoring of Timing Deviations in Embedded Real-Time Systems Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1