通用输入变量提取:一种基于遗传算法的程序

S. Cateni, V. Colla, M. Vannucci
{"title":"通用输入变量提取:一种基于遗传算法的程序","authors":"S. Cateni, V. Colla, M. Vannucci","doi":"10.1109/ISDA.2009.190","DOIUrl":null,"url":null,"abstract":"The paper presents an application of genetic algorithms to the problem of input variables selection for the design of neural systems. The basic idea of the proposed method lies in the use of genetic algorithms in order to select the set of variables to be fed to the neural networks. However, the main concept behind this approach is far more general and does not depend on the particular adopted model: it can be used for a wide category of systems, also non-neural, and with a variety of performance indicators. The proposed method has been tested on a simple case study, in order to demonstrate its effectiveness. The results obtained in the processing of experimental data are presented and discussed.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"General Purpose Input Variables Extraction: A Genetic Algorithm Based Procedure GIVE A GAP\",\"authors\":\"S. Cateni, V. Colla, M. Vannucci\",\"doi\":\"10.1109/ISDA.2009.190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an application of genetic algorithms to the problem of input variables selection for the design of neural systems. The basic idea of the proposed method lies in the use of genetic algorithms in order to select the set of variables to be fed to the neural networks. However, the main concept behind this approach is far more general and does not depend on the particular adopted model: it can be used for a wide category of systems, also non-neural, and with a variety of performance indicators. The proposed method has been tested on a simple case study, in order to demonstrate its effectiveness. The results obtained in the processing of experimental data are presented and discussed.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

本文介绍了遗传算法在神经系统设计中输入变量选择问题中的应用。提出的方法的基本思想在于使用遗传算法来选择要馈送给神经网络的变量集。然而,这种方法背后的主要概念要普遍得多,不依赖于所采用的特定模型:它可以用于广泛的系统,也可以用于非神经系统,并具有各种性能指标。通过一个简单的案例分析,验证了该方法的有效性。对实验数据处理的结果进行了介绍和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
General Purpose Input Variables Extraction: A Genetic Algorithm Based Procedure GIVE A GAP
The paper presents an application of genetic algorithms to the problem of input variables selection for the design of neural systems. The basic idea of the proposed method lies in the use of genetic algorithms in order to select the set of variables to be fed to the neural networks. However, the main concept behind this approach is far more general and does not depend on the particular adopted model: it can be used for a wide category of systems, also non-neural, and with a variety of performance indicators. The proposed method has been tested on a simple case study, in order to demonstrate its effectiveness. The results obtained in the processing of experimental data are presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EACImpute: An Evolutionary Algorithm for Clustering-Based Imputation An FPGA Based Arrhythmia Recognition System for Wearable Applications Knowledge Discovery Approaches for Early Detection of Decompensation Conditions in Heart Failure Patients Evaluating an Intelligent Business System with a Fuzzy Multi-criteria Approach Time Analysis of Forum Evolution as Support Tool for E-Moderating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1