{"title":"基于KMK的糖尿病数据性能估计混合方法","authors":"Yasir Minhaj Dubey Animesh Kumar Khan","doi":"10.19101/ijacr.2021.1152043","DOIUrl":null,"url":null,"abstract":"In this paper k-means clustering algorithm has been used with k-points (KMK) selection. It has been applied on the PIMA Indian diabetes dataset. It has been used for distance estimation, centroid selection, effect of data size variations and for the analysis of the complete record. The cluster section has been found to be improved based on k-point selection. It has been used for the assignment of initial centroid. The results indicate that the KMK algorithm is capable in the improvement of centroid selection and distance measures in the assignments of data points. It is due to the better centroid selection mechanism by k-points selection based on the weight measures from the selected dataset. So, the obtained clusters are better in comparison to k-means.","PeriodicalId":273530,"journal":{"name":"International Journal of Advanced Computer Research","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KMK based hybrid approach for the performance estimation in case of diabetes data\",\"authors\":\"Yasir Minhaj Dubey Animesh Kumar Khan\",\"doi\":\"10.19101/ijacr.2021.1152043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper k-means clustering algorithm has been used with k-points (KMK) selection. It has been applied on the PIMA Indian diabetes dataset. It has been used for distance estimation, centroid selection, effect of data size variations and for the analysis of the complete record. The cluster section has been found to be improved based on k-point selection. It has been used for the assignment of initial centroid. The results indicate that the KMK algorithm is capable in the improvement of centroid selection and distance measures in the assignments of data points. It is due to the better centroid selection mechanism by k-points selection based on the weight measures from the selected dataset. So, the obtained clusters are better in comparison to k-means.\",\"PeriodicalId\":273530,\"journal\":{\"name\":\"International Journal of Advanced Computer Research\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19101/ijacr.2021.1152043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19101/ijacr.2021.1152043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
KMK based hybrid approach for the performance estimation in case of diabetes data
In this paper k-means clustering algorithm has been used with k-points (KMK) selection. It has been applied on the PIMA Indian diabetes dataset. It has been used for distance estimation, centroid selection, effect of data size variations and for the analysis of the complete record. The cluster section has been found to be improved based on k-point selection. It has been used for the assignment of initial centroid. The results indicate that the KMK algorithm is capable in the improvement of centroid selection and distance measures in the assignments of data points. It is due to the better centroid selection mechanism by k-points selection based on the weight measures from the selected dataset. So, the obtained clusters are better in comparison to k-means.