C. Senger, V. Sidorenko, Steffen Schober, M. Bossert, V. Zyablov
{"title":"里德-所罗门码的自适应单次试错/擦除解码","authors":"C. Senger, V. Sidorenko, Steffen Schober, M. Bossert, V. Zyablov","doi":"10.1109/CWIT.2011.5872121","DOIUrl":null,"url":null,"abstract":"Algebraic decoding algorithms are commonly applied for the decoding of Reed-Solomon codes. Their main advantages are low computational complexity and predictable decoding capabilities. Many algorithms can be extended for correction of both errors and erasures. This enables the decoder to exploit binary quantized reliability information obtained from the transmission channel: Received symbols with high reliability are forwarded to the decoding algorithm while symbols with low reliability are erased. In this paper we investigate adaptive single-trial error/erasure decoding of Reed-Solomon codes, i.e. we derive an adaptive erasing strategy which minimizes the residual codeword error probability after decoding. Our result is applicable to any error/erasure decoding algorithm as long as its decoding capabilities can be expressed by a decoder capability function. Examples are Bounded Minimum Distance decoding with the Berlekamp-Massey- or the Sugiyama algorithms and the Guruswami-Sudan list decoder.","PeriodicalId":250626,"journal":{"name":"2011 12th Canadian Workshop on Information Theory","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive single-trial error/erasure decoding of Reed-Solomon codes\",\"authors\":\"C. Senger, V. Sidorenko, Steffen Schober, M. Bossert, V. Zyablov\",\"doi\":\"10.1109/CWIT.2011.5872121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algebraic decoding algorithms are commonly applied for the decoding of Reed-Solomon codes. Their main advantages are low computational complexity and predictable decoding capabilities. Many algorithms can be extended for correction of both errors and erasures. This enables the decoder to exploit binary quantized reliability information obtained from the transmission channel: Received symbols with high reliability are forwarded to the decoding algorithm while symbols with low reliability are erased. In this paper we investigate adaptive single-trial error/erasure decoding of Reed-Solomon codes, i.e. we derive an adaptive erasing strategy which minimizes the residual codeword error probability after decoding. Our result is applicable to any error/erasure decoding algorithm as long as its decoding capabilities can be expressed by a decoder capability function. Examples are Bounded Minimum Distance decoding with the Berlekamp-Massey- or the Sugiyama algorithms and the Guruswami-Sudan list decoder.\",\"PeriodicalId\":250626,\"journal\":{\"name\":\"2011 12th Canadian Workshop on Information Theory\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 12th Canadian Workshop on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CWIT.2011.5872121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Canadian Workshop on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CWIT.2011.5872121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive single-trial error/erasure decoding of Reed-Solomon codes
Algebraic decoding algorithms are commonly applied for the decoding of Reed-Solomon codes. Their main advantages are low computational complexity and predictable decoding capabilities. Many algorithms can be extended for correction of both errors and erasures. This enables the decoder to exploit binary quantized reliability information obtained from the transmission channel: Received symbols with high reliability are forwarded to the decoding algorithm while symbols with low reliability are erased. In this paper we investigate adaptive single-trial error/erasure decoding of Reed-Solomon codes, i.e. we derive an adaptive erasing strategy which minimizes the residual codeword error probability after decoding. Our result is applicable to any error/erasure decoding algorithm as long as its decoding capabilities can be expressed by a decoder capability function. Examples are Bounded Minimum Distance decoding with the Berlekamp-Massey- or the Sugiyama algorithms and the Guruswami-Sudan list decoder.