基于噪声调整稀疏保持的高光谱图像降维分类

N. Ly, Q. Du, J. Fowler
{"title":"基于噪声调整稀疏保持的高光谱图像降维分类","authors":"N. Ly, Q. Du, J. Fowler","doi":"10.1109/PPRS.2012.6398318","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the performance of a sparsity-preserving graph embedding based approach, called l1 graph, in hyperspectral image dimensionality reduction (DR), and propose noise-adjusted sparsity-preserving (NASP) based DR when training samples are unavailable. In conjunction with the state-of-the-art hyperspectral image classifier, support vector machine with composite kernels (SVM-CK), the experimental study show that NASP can significantly improve the classification accuracy, compared to other widely used DR methods.","PeriodicalId":139043,"journal":{"name":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise-adjusted sparsity-preserving-based dimensionality reduction for hyperspectral image classification\",\"authors\":\"N. Ly, Q. Du, J. Fowler\",\"doi\":\"10.1109/PPRS.2012.6398318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the performance of a sparsity-preserving graph embedding based approach, called l1 graph, in hyperspectral image dimensionality reduction (DR), and propose noise-adjusted sparsity-preserving (NASP) based DR when training samples are unavailable. In conjunction with the state-of-the-art hyperspectral image classifier, support vector machine with composite kernels (SVM-CK), the experimental study show that NASP can significantly improve the classification accuracy, compared to other widely used DR methods.\",\"PeriodicalId\":139043,\"journal\":{\"name\":\"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPRS.2012.6398318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPRS.2012.6398318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于稀疏保持图嵌入的l1图方法在高光谱图像降维(DR)中的性能,并在训练样本不可用的情况下提出了基于噪声调整的稀疏保持(NASP)方法。结合目前最先进的高光谱图像分类器,支持向量机复合核(SVM-CK),实验研究表明,与其他广泛使用的DR方法相比,NASP可以显著提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise-adjusted sparsity-preserving-based dimensionality reduction for hyperspectral image classification
In this paper, we investigate the performance of a sparsity-preserving graph embedding based approach, called l1 graph, in hyperspectral image dimensionality reduction (DR), and propose noise-adjusted sparsity-preserving (NASP) based DR when training samples are unavailable. In conjunction with the state-of-the-art hyperspectral image classifier, support vector machine with composite kernels (SVM-CK), the experimental study show that NASP can significantly improve the classification accuracy, compared to other widely used DR methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D classification of crossroads from multiple aerial images using conditional random fields Unsupervised change detection via hierarchical support vector clustering Study for the periodicity of volcanic activity using satellite data A two-dimensional production system for grouping persistent scatterers in urban high-resolution SAR scenes Remote sensing segmentation benchmark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1