{"title":"基于全阶滑模观测器模糊滑模控制的永磁同步电机无传感器直接转矩控制","authors":"Idriss Baba Arbi, Abdelkrim Allag","doi":"10.18280/ejee.230507","DOIUrl":null,"url":null,"abstract":"This paper presents an implementation of Fuzzy Sliding Mode Control for Sensorless Direct Torque Control (DTC) of a Permanent Magnets Synchronous Machine as a combination between the known performances of direct torque control on the one hand and the robustness of sliding mode control on the other hand. The fuzzy controller is introduced to reduce the effect of chattering phenomenon which is the major disadvantage of sliding mode control technique. The proposed controller is used to replace the conventional PI angular speed controller that generates the electromagnetic reference torque for DTC, in order to improve the dynamic and the permanent behaviors of the angular speed control response as well the electromagnetic torque. The proposed control technique is implemented without using speed or position sensors, where a Full Order Sliding Mode Observer is used. It is shown that the proposed control technique has given improved simulation results with different speed ranges and different load values.","PeriodicalId":340029,"journal":{"name":"European Journal of Electrical Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensorless Direct Torque Control of PMSM Based on Fuzzy Sliding Mode Control with Full Order Sliding Mode Observer\",\"authors\":\"Idriss Baba Arbi, Abdelkrim Allag\",\"doi\":\"10.18280/ejee.230507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an implementation of Fuzzy Sliding Mode Control for Sensorless Direct Torque Control (DTC) of a Permanent Magnets Synchronous Machine as a combination between the known performances of direct torque control on the one hand and the robustness of sliding mode control on the other hand. The fuzzy controller is introduced to reduce the effect of chattering phenomenon which is the major disadvantage of sliding mode control technique. The proposed controller is used to replace the conventional PI angular speed controller that generates the electromagnetic reference torque for DTC, in order to improve the dynamic and the permanent behaviors of the angular speed control response as well the electromagnetic torque. The proposed control technique is implemented without using speed or position sensors, where a Full Order Sliding Mode Observer is used. It is shown that the proposed control technique has given improved simulation results with different speed ranges and different load values.\",\"PeriodicalId\":340029,\"journal\":{\"name\":\"European Journal of Electrical Engineering\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/ejee.230507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ejee.230507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensorless Direct Torque Control of PMSM Based on Fuzzy Sliding Mode Control with Full Order Sliding Mode Observer
This paper presents an implementation of Fuzzy Sliding Mode Control for Sensorless Direct Torque Control (DTC) of a Permanent Magnets Synchronous Machine as a combination between the known performances of direct torque control on the one hand and the robustness of sliding mode control on the other hand. The fuzzy controller is introduced to reduce the effect of chattering phenomenon which is the major disadvantage of sliding mode control technique. The proposed controller is used to replace the conventional PI angular speed controller that generates the electromagnetic reference torque for DTC, in order to improve the dynamic and the permanent behaviors of the angular speed control response as well the electromagnetic torque. The proposed control technique is implemented without using speed or position sensors, where a Full Order Sliding Mode Observer is used. It is shown that the proposed control technique has given improved simulation results with different speed ranges and different load values.