基于mashup的热点分析结果可视化

Han dong Wang, H. Zou, Y. Yue, Qingquan Li
{"title":"基于mashup的热点分析结果可视化","authors":"Han dong Wang, H. Zou, Y. Yue, Qingquan Li","doi":"10.1145/1629890.1629900","DOIUrl":null,"url":null,"abstract":"Driven by travel demand, the distribution and density of taxi passenger pick-up and drop-off points reflect the attractiveness of an area and thus, can be used to find out hot spots and the movement of human flow, to benefit location-based services (LBS) and transport planning, etc. There exist some point pattern analysis (PPA) methods can facilitate the analysis. But most of them lack of the ability to integrate with location-based data in geo-visualization environment. We build an interactive visualization system based on mashup technique to contain diverse analysis data and applications under one framework. Two PPA methods--Kernel Density Estimation (KDE) and Agglomerative Hierarchical Clustering (AHC) are used to discover the hot spots. Microsoft Virtual Earth is used as data integration and visualization platform by combining with some other web techniques, to display analysis results in both static and dynamic effect. This study on one hand represents a novel application of vehicle trajectory data, reveals urban hot spots and traffic pattern, and addresses data integration and geo-visualization issues on the other hand. Preliminary attempt can benefit LBS and LBSN (Location-based Social Network) related web applications.","PeriodicalId":107369,"journal":{"name":"Workshop on Location-based Social Networks","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Visualizing hot spot analysis result based on mashup\",\"authors\":\"Han dong Wang, H. Zou, Y. Yue, Qingquan Li\",\"doi\":\"10.1145/1629890.1629900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by travel demand, the distribution and density of taxi passenger pick-up and drop-off points reflect the attractiveness of an area and thus, can be used to find out hot spots and the movement of human flow, to benefit location-based services (LBS) and transport planning, etc. There exist some point pattern analysis (PPA) methods can facilitate the analysis. But most of them lack of the ability to integrate with location-based data in geo-visualization environment. We build an interactive visualization system based on mashup technique to contain diverse analysis data and applications under one framework. Two PPA methods--Kernel Density Estimation (KDE) and Agglomerative Hierarchical Clustering (AHC) are used to discover the hot spots. Microsoft Virtual Earth is used as data integration and visualization platform by combining with some other web techniques, to display analysis results in both static and dynamic effect. This study on one hand represents a novel application of vehicle trajectory data, reveals urban hot spots and traffic pattern, and addresses data integration and geo-visualization issues on the other hand. Preliminary attempt can benefit LBS and LBSN (Location-based Social Network) related web applications.\",\"PeriodicalId\":107369,\"journal\":{\"name\":\"Workshop on Location-based Social Networks\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Location-based Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629890.1629900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Location-based Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629890.1629900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

在出行需求的驱动下,的士上下车点的分布和密度反映了一个地区的吸引力,从而可以用来发现热点和人流的流动,从而有利于定位服务(LBS)和交通规划等。存在一些点模式分析(PPA)方法可以方便地进行分析。但它们大多缺乏与地理可视化环境中基于位置的数据集成的能力。我们构建了一个基于mashup技术的交互式可视化系统,将多种分析数据和应用程序包含在一个框架下。使用核密度估计(KDE)和聚类层次聚类(AHC)两种PPA方法来发现热点。利用微软虚拟地球作为数据集成和可视化平台,结合其他一些web技术,以静态和动态两种效果显示分析结果。该研究一方面代表了车辆轨迹数据的新应用,揭示了城市热点和交通模式,另一方面解决了数据集成和地理可视化问题。初步尝试可以使LBS和LBSN(基于位置的社交网络)相关的网络应用受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualizing hot spot analysis result based on mashup
Driven by travel demand, the distribution and density of taxi passenger pick-up and drop-off points reflect the attractiveness of an area and thus, can be used to find out hot spots and the movement of human flow, to benefit location-based services (LBS) and transport planning, etc. There exist some point pattern analysis (PPA) methods can facilitate the analysis. But most of them lack of the ability to integrate with location-based data in geo-visualization environment. We build an interactive visualization system based on mashup technique to contain diverse analysis data and applications under one framework. Two PPA methods--Kernel Density Estimation (KDE) and Agglomerative Hierarchical Clustering (AHC) are used to discover the hot spots. Microsoft Virtual Earth is used as data integration and visualization platform by combining with some other web techniques, to display analysis results in both static and dynamic effect. This study on one hand represents a novel application of vehicle trajectory data, reveals urban hot spots and traffic pattern, and addresses data integration and geo-visualization issues on the other hand. Preliminary attempt can benefit LBS and LBSN (Location-based Social Network) related web applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting location-based events with spatio-temporal storytelling VacationFinder: a tool for collecting, analyzing, and visualizing geotagged Twitter data to find top vacation spots Sophy: a morphological framework for structuring geo-referenced social media From where do tweets originate?: a GIS approach for user location inference WeiboStand: capturing Chinese breaking news using Weibo "tweets"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1