硬币的另一面:分析针对错误注入攻击的软件编码方案

J. Breier, Dirmanto Jap, S. Bhasin
{"title":"硬币的另一面:分析针对错误注入攻击的软件编码方案","authors":"J. Breier, Dirmanto Jap, S. Bhasin","doi":"10.1109/HST.2016.7495584","DOIUrl":null,"url":null,"abstract":"The versatility and cost of embedded systems have made it ubiquitous. Such wide-application exposes an embedded system to a variety of physical threats like side-channel attacks (SCA) and fault attacks (FA). Recently, a couple of software encoding schemes were proposed as a protection against SCA. These protection schemes are based on dual-rail precharge logic (DPL), previously shown resistant to both SCA and FA. In this paper, we analyze the previously proposed software encoding schemes against FA. Our results show that software encoding offers only limited resistance to FA. Finally, improvement to software-encoding schemes is improved. With this improvement, software encoding can serve as a common SCA and FA counter-measure with an exploitable fault probability as low as 0.0048.","PeriodicalId":194799,"journal":{"name":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The other side of the coin: Analyzing software encoding schemes against fault injection attacks\",\"authors\":\"J. Breier, Dirmanto Jap, S. Bhasin\",\"doi\":\"10.1109/HST.2016.7495584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The versatility and cost of embedded systems have made it ubiquitous. Such wide-application exposes an embedded system to a variety of physical threats like side-channel attacks (SCA) and fault attacks (FA). Recently, a couple of software encoding schemes were proposed as a protection against SCA. These protection schemes are based on dual-rail precharge logic (DPL), previously shown resistant to both SCA and FA. In this paper, we analyze the previously proposed software encoding schemes against FA. Our results show that software encoding offers only limited resistance to FA. Finally, improvement to software-encoding schemes is improved. With this improvement, software encoding can serve as a common SCA and FA counter-measure with an exploitable fault probability as low as 0.0048.\",\"PeriodicalId\":194799,\"journal\":{\"name\":\"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HST.2016.7495584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2016.7495584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

嵌入式系统的多功能性和成本使得它无处不在。如此广泛的应用使嵌入式系统暴露在各种物理威胁之下,如侧信道攻击(SCA)和故障攻击(FA)。最近,提出了一些软件编码方案来防止SCA。这些保护方案是基于双轨预充逻辑(DPL),以前显示抗SCA和FA。在本文中,我们分析了以前提出的针对FA的软件编码方案。我们的研究结果表明,软件编码只提供有限的抗FA。最后,对软件编码方案进行了改进。通过这种改进,软件编码可以作为常见的SCA和FA对策,可利用的故障概率低至0.0048。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The other side of the coin: Analyzing software encoding schemes against fault injection attacks
The versatility and cost of embedded systems have made it ubiquitous. Such wide-application exposes an embedded system to a variety of physical threats like side-channel attacks (SCA) and fault attacks (FA). Recently, a couple of software encoding schemes were proposed as a protection against SCA. These protection schemes are based on dual-rail precharge logic (DPL), previously shown resistant to both SCA and FA. In this paper, we analyze the previously proposed software encoding schemes against FA. Our results show that software encoding offers only limited resistance to FA. Finally, improvement to software-encoding schemes is improved. With this improvement, software encoding can serve as a common SCA and FA counter-measure with an exploitable fault probability as low as 0.0048.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SDSM: Fast and scalable security support for directory-based distributed shared memory Granularity and detection capability of an adaptive embedded Hardware Trojan detection system Adaptive real-time Trojan detection framework through machine learning Parsimonious design strategy for linear layers with high diffusion in block ciphers Hardware security risk assessment: A case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1