使用Wikipedia和DBPedia构建印尼语命名实体识别器

A. Luthfi, Bayu Distiawan Trisedya, R. Manurung
{"title":"使用Wikipedia和DBPedia构建印尼语命名实体识别器","authors":"A. Luthfi, Bayu Distiawan Trisedya, R. Manurung","doi":"10.1109/IALP.2014.6973520","DOIUrl":null,"url":null,"abstract":"This paper describes the development of an Indonesian NER system using online data such as Wikipedia 1 and DBPedia 2. The system is based on the Stanford NER system [8] and utilizes training documents constructed automatically from Wikipedia. Each entity, i.e. word or phrase that has a hyperlink, in the Wikipedia documents are tagged according to information that is obtained from DBPedia. In this very first version, we are only interested in three entities, namely: Person, Place, and Organization. The system is evaluated using cross fold validation and also evaluated using a gold standard that was manually annotated. Using cross validation evaluation, our Indonesian NER managed to obtain precision and recall values above 90%, whereas the evaluation using gold standard shows that the Indonesian NER achieves high precision but very low recall.","PeriodicalId":117334,"journal":{"name":"2014 International Conference on Asian Language Processing (IALP)","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Building an Indonesian named entity recognizer using Wikipedia and DBPedia\",\"authors\":\"A. Luthfi, Bayu Distiawan Trisedya, R. Manurung\",\"doi\":\"10.1109/IALP.2014.6973520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the development of an Indonesian NER system using online data such as Wikipedia 1 and DBPedia 2. The system is based on the Stanford NER system [8] and utilizes training documents constructed automatically from Wikipedia. Each entity, i.e. word or phrase that has a hyperlink, in the Wikipedia documents are tagged according to information that is obtained from DBPedia. In this very first version, we are only interested in three entities, namely: Person, Place, and Organization. The system is evaluated using cross fold validation and also evaluated using a gold standard that was manually annotated. Using cross validation evaluation, our Indonesian NER managed to obtain precision and recall values above 90%, whereas the evaluation using gold standard shows that the Indonesian NER achieves high precision but very low recall.\",\"PeriodicalId\":117334,\"journal\":{\"name\":\"2014 International Conference on Asian Language Processing (IALP)\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2014.6973520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2014.6973520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文描述了利用维基百科1和DBPedia 2等在线数据开发印度尼西亚NER系统。该系统基于斯坦福NER系统[8],并利用从维基百科自动构建的训练文档。维基百科文档中的每个实体,即具有超链接的单词或短语,都根据从DBPedia获得的信息进行标记。在第一个版本中,我们只对三个实体感兴趣,即:Person、Place和Organization。系统使用交叉折叠验证进行评估,也使用手动注释的金标准进行评估。使用交叉验证评价,我们的印尼语NER获得了90%以上的精度和召回值,而使用金标准的评价表明印尼语NER达到了很高的精度,但召回率很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building an Indonesian named entity recognizer using Wikipedia and DBPedia
This paper describes the development of an Indonesian NER system using online data such as Wikipedia 1 and DBPedia 2. The system is based on the Stanford NER system [8] and utilizes training documents constructed automatically from Wikipedia. Each entity, i.e. word or phrase that has a hyperlink, in the Wikipedia documents are tagged according to information that is obtained from DBPedia. In this very first version, we are only interested in three entities, namely: Person, Place, and Organization. The system is evaluated using cross fold validation and also evaluated using a gold standard that was manually annotated. Using cross validation evaluation, our Indonesian NER managed to obtain precision and recall values above 90%, whereas the evaluation using gold standard shows that the Indonesian NER achieves high precision but very low recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic detection of subject/object drops in Bengali Which performs better for new word detection, character based or Chinese Word Segmentation based? Effectiveness of multiscale fractal dimension-based phonetic segmentation in speech synthesis for low resource language A Cepstral Mean Subtraction based features for Singer Identification The analysis on mistaken segmentation of Tibetan words based on statistical method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1