为诊断分类创建组级功能定义地图集

Francisco Pereira, J. M. Walz, H. E. Çetingül, S. Sudarsky, M. Nadar, R. Prakash
{"title":"为诊断分类创建组级功能定义地图集","authors":"Francisco Pereira, J. M. Walz, H. E. Çetingül, S. Sudarsky, M. Nadar, R. Prakash","doi":"10.1109/PRNI.2013.17","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a method to produce a subdivision of an anatomical atlas by taking into account the similarity of resting state functional MRI time series within anatomically-defined regions of interest. This method differs from others in that the resulting atlases are comparable across subjects, making group analyses possible. Finally, we show that the functional connectivity matrices obtained with this method can be used in a diagnostic classification task and that they enhance a classifier's ability to extract relevant information from the data, leading to more interpretable prediction models in the process.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Creating Group-Level Functionally-Defined Atlases for Diagnostic Classification\",\"authors\":\"Francisco Pereira, J. M. Walz, H. E. Çetingül, S. Sudarsky, M. Nadar, R. Prakash\",\"doi\":\"10.1109/PRNI.2013.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a method to produce a subdivision of an anatomical atlas by taking into account the similarity of resting state functional MRI time series within anatomically-defined regions of interest. This method differs from others in that the resulting atlases are comparable across subjects, making group analyses possible. Finally, we show that the functional connectivity matrices obtained with this method can be used in a diagnostic classification task and that they enhance a classifier's ability to extract relevant information from the data, leading to more interpretable prediction models in the process.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们介绍了一种方法来产生解剖图谱的细分,考虑到静息状态功能MRI时间序列在解剖学定义的感兴趣区域内的相似性。这种方法与其他方法的不同之处在于,所得到的地图集在不同科目之间具有可比性,从而使群体分析成为可能。最后,我们证明了用这种方法获得的功能连接矩阵可以用于诊断分类任务,并且它们增强了分类器从数据中提取相关信息的能力,从而在此过程中产生更多可解释的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Creating Group-Level Functionally-Defined Atlases for Diagnostic Classification
In this paper we introduce a method to produce a subdivision of an anatomical atlas by taking into account the similarity of resting state functional MRI time series within anatomically-defined regions of interest. This method differs from others in that the resulting atlases are comparable across subjects, making group analyses possible. Finally, we show that the functional connectivity matrices obtained with this method can be used in a diagnostic classification task and that they enhance a classifier's ability to extract relevant information from the data, leading to more interpretable prediction models in the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two Test Statistics for Cross-Modal Graph Community Significance MVPA Permutation Schemes: Permutation Testing in the Land of Cross-Validation Multivariate Classification of Complex and Multi-echo fMRI Data Discovering Regional Pathological Patterns in Brain MRI Detection of Cognitive Impairment in MS Based on an EEG P300 Paradigm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1