下一代物联网的能源和频谱高效信令

Xinyue Liu, I. Darwazeh
{"title":"下一代物联网的能源和频谱高效信令","authors":"Xinyue Liu, I. Darwazeh","doi":"10.1109/CSNDSP54353.2022.9907968","DOIUrl":null,"url":null,"abstract":"This work proposes an energy and spectrally efficient signalling technique for the next generation internet of things (IoT). The signalling method employs the bandwidth compressed fast-orthogonal frequency division multiplexing (FOFDM) scheme with the single dimensional pulse amplitude modulation (PAM) as well as the frequency orthogonal filtering technique using Hilbert transform (HT) pair. The proposed HT-FOFDM system is designed and modelled based on the narrowband IoT (NB-IoT) specifications. To investigate the designed signalling method of different spectral efficiencies, we conducted simulations for HT-FOFDM with comparisons to single-carrier frequency division multiple access (SC-FDMA). We show that the proposed PAM modulated HT-FOFDM signalling increases the data rate effectively while maintaining reliable transmission within the same bandwidth of 180kHz. Comparative results of the bit error rate (BER) performance in additive white Gaussian noise (AWGN) channel and constellation diagrams of received noisy signals are presented. Furthermore, we show that HT-FOFDM with PAM modulation schemes comprehensively outperforms SC-FDMA that achieves the same spectral efficiencies with significant power advantages.","PeriodicalId":288069,"journal":{"name":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and Spectrally Efficient Signalling for Next Generation IoT\",\"authors\":\"Xinyue Liu, I. Darwazeh\",\"doi\":\"10.1109/CSNDSP54353.2022.9907968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes an energy and spectrally efficient signalling technique for the next generation internet of things (IoT). The signalling method employs the bandwidth compressed fast-orthogonal frequency division multiplexing (FOFDM) scheme with the single dimensional pulse amplitude modulation (PAM) as well as the frequency orthogonal filtering technique using Hilbert transform (HT) pair. The proposed HT-FOFDM system is designed and modelled based on the narrowband IoT (NB-IoT) specifications. To investigate the designed signalling method of different spectral efficiencies, we conducted simulations for HT-FOFDM with comparisons to single-carrier frequency division multiple access (SC-FDMA). We show that the proposed PAM modulated HT-FOFDM signalling increases the data rate effectively while maintaining reliable transmission within the same bandwidth of 180kHz. Comparative results of the bit error rate (BER) performance in additive white Gaussian noise (AWGN) channel and constellation diagrams of received noisy signals are presented. Furthermore, we show that HT-FOFDM with PAM modulation schemes comprehensively outperforms SC-FDMA that achieves the same spectral efficiencies with significant power advantages.\",\"PeriodicalId\":288069,\"journal\":{\"name\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP54353.2022.9907968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP54353.2022.9907968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作为下一代物联网(IoT)提出了一种能源和频谱高效的信号技术。该信令方法采用了带宽压缩快速正交频分复用(FOFDM)方案和单维脉冲调幅(PAM)以及希尔伯特变换(HT)对的频率正交滤波技术。提出的HT-FOFDM系统是基于窄带物联网(NB-IoT)规范设计和建模的。为了研究设计的不同频谱效率的信令方法,我们对HT-FOFDM进行了仿真,并与单载波频分多址(SC-FDMA)进行了比较。研究结果表明,PAM调制的HT-FOFDM信令在180kHz相同带宽内有效地提高了数据速率,同时保持了可靠的传输。给出了加性高斯白噪声(AWGN)信道误码率(BER)性能和接收噪声信号星座图的比较结果。此外,我们表明,采用PAM调制方案的HT-FOFDM全面优于具有显着功率优势的SC-FDMA,后者实现了相同的频谱效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy and Spectrally Efficient Signalling for Next Generation IoT
This work proposes an energy and spectrally efficient signalling technique for the next generation internet of things (IoT). The signalling method employs the bandwidth compressed fast-orthogonal frequency division multiplexing (FOFDM) scheme with the single dimensional pulse amplitude modulation (PAM) as well as the frequency orthogonal filtering technique using Hilbert transform (HT) pair. The proposed HT-FOFDM system is designed and modelled based on the narrowband IoT (NB-IoT) specifications. To investigate the designed signalling method of different spectral efficiencies, we conducted simulations for HT-FOFDM with comparisons to single-carrier frequency division multiple access (SC-FDMA). We show that the proposed PAM modulated HT-FOFDM signalling increases the data rate effectively while maintaining reliable transmission within the same bandwidth of 180kHz. Comparative results of the bit error rate (BER) performance in additive white Gaussian noise (AWGN) channel and constellation diagrams of received noisy signals are presented. Furthermore, we show that HT-FOFDM with PAM modulation schemes comprehensively outperforms SC-FDMA that achieves the same spectral efficiencies with significant power advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Visible Light Positioning with MSE Inner Loop for Underwater Environment Fibre Optics Biosensors for the Detection of Bacteria – a review Experimental characterization of sub-pixel underwater optical camera communications Energy aware routing protocol for sparse underwater acoustic wireless sensor network iDAM: A Distributed MUD Framework for Mitigation of Volumetric Attacks in IoT Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1