在光学相干断层扫描上看到的视网膜下高反射物质作为年龄相关性黄斑变性疾病监测的生物标志物

H. B. Lee, B. Ong, M. Katta, C. Yvon, L. Lu, R. Zakri, N. Patel
{"title":"在光学相干断层扫描上看到的视网膜下高反射物质作为年龄相关性黄斑变性疾病监测的生物标志物","authors":"H. B. Lee, B. Ong, M. Katta, C. Yvon, L. Lu, R. Zakri, N. Patel","doi":"10.1117/12.2287271","DOIUrl":null,"url":null,"abstract":"Subretinal hyper-reflective material (SHRM) seen on optical coherence tomography (OCT) is thought to be a collection of fibrous tissues and vascular networks that are identified in age-related macular degeneration (ARMD). We have carried out a retrospective analysis of 91 OCT scans of neovascular ARMD subtypes including classic and occult choroidal neovascularization (CNV) and retinal angiomatous proliferation (RAP). All three subtypes received ranibizumab, an anti-vascular endothelial growth factor (Anti-VEGF) intravitreal injections on an as-needed basis following the loading doses. Volumes of SHRM were calculated using caliper measurements of maximal height and length of SHRM seen on OCT. The ellipsoid formula derived from tumour models was used to calculate the volume. It was found that occult CNV and RAP have larger SHRM volumes than those of classic CNV. SHRM volumes reduced overall following loading doses of Anti-VEGF injections at 4 months in all three subtypes. However, a rebound increase in volume was noticed in both occult CNV and RAP cohort at 12 months despite the initial, steeper reductions in the subtypes. These findings were consistent with the data seen in volume measurement using Topcon’s automated segmentation algorithm in a smaller cohort of patients. We propose that SHRM should be used as a potential biomarker to quantify both disease progression and prognosis of neovascular ARMD alongside other conventional methods.","PeriodicalId":184459,"journal":{"name":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subretinal hyper-reflective material seen on optical coherence tomography as a biomarker for disease monitoring in age-related macular degeneration\",\"authors\":\"H. B. Lee, B. Ong, M. Katta, C. Yvon, L. Lu, R. Zakri, N. Patel\",\"doi\":\"10.1117/12.2287271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subretinal hyper-reflective material (SHRM) seen on optical coherence tomography (OCT) is thought to be a collection of fibrous tissues and vascular networks that are identified in age-related macular degeneration (ARMD). We have carried out a retrospective analysis of 91 OCT scans of neovascular ARMD subtypes including classic and occult choroidal neovascularization (CNV) and retinal angiomatous proliferation (RAP). All three subtypes received ranibizumab, an anti-vascular endothelial growth factor (Anti-VEGF) intravitreal injections on an as-needed basis following the loading doses. Volumes of SHRM were calculated using caliper measurements of maximal height and length of SHRM seen on OCT. The ellipsoid formula derived from tumour models was used to calculate the volume. It was found that occult CNV and RAP have larger SHRM volumes than those of classic CNV. SHRM volumes reduced overall following loading doses of Anti-VEGF injections at 4 months in all three subtypes. However, a rebound increase in volume was noticed in both occult CNV and RAP cohort at 12 months despite the initial, steeper reductions in the subtypes. These findings were consistent with the data seen in volume measurement using Topcon’s automated segmentation algorithm in a smaller cohort of patients. We propose that SHRM should be used as a potential biomarker to quantify both disease progression and prognosis of neovascular ARMD alongside other conventional methods.\",\"PeriodicalId\":184459,\"journal\":{\"name\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2287271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2287271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在光学相干断层扫描(OCT)上看到的视网膜下超反射物质(SHRM)被认为是在年龄相关性黄斑变性(ARMD)中发现的纤维组织和血管网络的集合。我们对91例新血管性ARMD亚型的OCT扫描进行了回顾性分析,包括经典和隐匿脉络膜新生血管(CNV)和视网膜血管瘤增生(RAP)。所有三种亚型患者在负荷剂量后根据需要接受雷尼单抗,一种抗血管内皮生长因子(Anti-VEGF)玻璃体内注射。使用卡尺测量oct上看到的最大高度和最大长度来计算SHRM的体积。使用由肿瘤模型导出的椭球公式来计算体积。发现隐蔽CNV和RAP的SHRM体积大于经典CNV。在所有三种亚型中,在4个月时抗vegf注射负荷剂量后,SHRM体积总体上减少。然而,在隐匿性CNV和RAP组中,尽管亚型最初的急剧减少,但在12个月时均注意到体积的反弹增加。这些发现与在一个较小的患者队列中使用Topcon的自动分割算法进行体积测量的数据一致。我们建议SHRM应该作为一种潜在的生物标志物,与其他传统方法一起量化新血管性ARMD的疾病进展和预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subretinal hyper-reflective material seen on optical coherence tomography as a biomarker for disease monitoring in age-related macular degeneration
Subretinal hyper-reflective material (SHRM) seen on optical coherence tomography (OCT) is thought to be a collection of fibrous tissues and vascular networks that are identified in age-related macular degeneration (ARMD). We have carried out a retrospective analysis of 91 OCT scans of neovascular ARMD subtypes including classic and occult choroidal neovascularization (CNV) and retinal angiomatous proliferation (RAP). All three subtypes received ranibizumab, an anti-vascular endothelial growth factor (Anti-VEGF) intravitreal injections on an as-needed basis following the loading doses. Volumes of SHRM were calculated using caliper measurements of maximal height and length of SHRM seen on OCT. The ellipsoid formula derived from tumour models was used to calculate the volume. It was found that occult CNV and RAP have larger SHRM volumes than those of classic CNV. SHRM volumes reduced overall following loading doses of Anti-VEGF injections at 4 months in all three subtypes. However, a rebound increase in volume was noticed in both occult CNV and RAP cohort at 12 months despite the initial, steeper reductions in the subtypes. These findings were consistent with the data seen in volume measurement using Topcon’s automated segmentation algorithm in a smaller cohort of patients. We propose that SHRM should be used as a potential biomarker to quantify both disease progression and prognosis of neovascular ARMD alongside other conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space Dental impression technique using optoelectronic devices Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography Stable supercontinuum source based on random lasing Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1