流svd:低秩近似和流加速器协同设计

Zhewen Yu, C. Bouganis
{"title":"流svd:低秩近似和流加速器协同设计","authors":"Zhewen Yu, C. Bouganis","doi":"10.1109/ICFPT52863.2021.9609813","DOIUrl":null,"url":null,"abstract":"The post-training compression of a Convolutional Neural Network (CNN) aims to produce Pareto-optimal designs on the accuracy-performance frontier when the access to training data is not possible. Low-rank approximation is one of the methods that is often utilised in such cases. However, existing work considers the low-rank approximation of the network and the optimisation of the hardware accelerator separately, leading to systems with sub-optimal performance. This work focuses on the efficient mapping of a CNN into an FPGA device, and presents StreamSVD, a model-accelerator co-design framework1. The framework considers simultaneously the compression of a CNN model through a hardware-aware low-rank approximation scheme, and the optimisation of the hardware accelerator's architecture by taking into account the approximation scheme's compute structure. Our results show that the co-designed StreamSVD outperforms existing work that utilises similar low-rank approximation schemes by providing better accuracy-throughput trade-off. The proposed framework also achieves competitive performance compared with other post-training compression methods, even outperforming them under certain cases.","PeriodicalId":376220,"journal":{"name":"2021 International Conference on Field-Programmable Technology (ICFPT)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"StreamSVD: Low-rank Approximation and Streaming Accelerator Co-design\",\"authors\":\"Zhewen Yu, C. Bouganis\",\"doi\":\"10.1109/ICFPT52863.2021.9609813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The post-training compression of a Convolutional Neural Network (CNN) aims to produce Pareto-optimal designs on the accuracy-performance frontier when the access to training data is not possible. Low-rank approximation is one of the methods that is often utilised in such cases. However, existing work considers the low-rank approximation of the network and the optimisation of the hardware accelerator separately, leading to systems with sub-optimal performance. This work focuses on the efficient mapping of a CNN into an FPGA device, and presents StreamSVD, a model-accelerator co-design framework1. The framework considers simultaneously the compression of a CNN model through a hardware-aware low-rank approximation scheme, and the optimisation of the hardware accelerator's architecture by taking into account the approximation scheme's compute structure. Our results show that the co-designed StreamSVD outperforms existing work that utilises similar low-rank approximation schemes by providing better accuracy-throughput trade-off. The proposed framework also achieves competitive performance compared with other post-training compression methods, even outperforming them under certain cases.\",\"PeriodicalId\":376220,\"journal\":{\"name\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT52863.2021.9609813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT52863.2021.9609813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

卷积神经网络(CNN)的训练后压缩旨在当无法访问训练数据时,在精度-性能边界上产生帕累托最优设计。低秩近似是在这种情况下经常使用的方法之一。然而,现有的工作分别考虑了网络的低秩近似和硬件加速器的优化,导致系统具有次优性能。这项工作的重点是将CNN有效地映射到FPGA器件,并提出了StreamSVD,一个模型加速器协同设计框架1。该框架同时考虑通过硬件感知的低秩近似方案对CNN模型进行压缩,并通过考虑近似方案的计算结构来优化硬件加速器的体系结构。我们的结果表明,共同设计的StreamSVD通过提供更好的精度-吞吐量权衡,优于利用类似低秩近似方案的现有工作。与其他训练后压缩方法相比,所提出的框架也具有竞争力,在某些情况下甚至优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
StreamSVD: Low-rank Approximation and Streaming Accelerator Co-design
The post-training compression of a Convolutional Neural Network (CNN) aims to produce Pareto-optimal designs on the accuracy-performance frontier when the access to training data is not possible. Low-rank approximation is one of the methods that is often utilised in such cases. However, existing work considers the low-rank approximation of the network and the optimisation of the hardware accelerator separately, leading to systems with sub-optimal performance. This work focuses on the efficient mapping of a CNN into an FPGA device, and presents StreamSVD, a model-accelerator co-design framework1. The framework considers simultaneously the compression of a CNN model through a hardware-aware low-rank approximation scheme, and the optimisation of the hardware accelerator's architecture by taking into account the approximation scheme's compute structure. Our results show that the co-designed StreamSVD outperforms existing work that utilises similar low-rank approximation schemes by providing better accuracy-throughput trade-off. The proposed framework also achieves competitive performance compared with other post-training compression methods, even outperforming them under certain cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of IOBUF-based Ring Oscillators StreamZip: Compressed Sliding-Windows for Stream Aggregation Tens of gigabytes per second JSON-to-Arrow conversion with FPGA accelerators A High-Performance and Flexible FPGA Inference Accelerator for Decision Forests Based on Prior Feature Space Partitioning SoC FPGA implementation of an unmanned mobile vehicle with an image transmission system over VNC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1