大功率微波发生器轴向促动器的设计研究

I. Küçük, Büşra Timur, Zafer Tanç, S. Demir
{"title":"大功率微波发生器轴向促动器的设计研究","authors":"I. Küçük, Büşra Timur, Zafer Tanç, S. Demir","doi":"10.1109/EMCT.2017.8090379","DOIUrl":null,"url":null,"abstract":"This paper presents design and simulation results of the cylindrical axial virtual cathode oscillator which is frequently used to damage electronic equipment by generating High Power Microwaves (HPM). Simulations are performed in MAGIC Tool Suite which uses FDTD-PIC algorithm to solve particle beam and field interactions. During the design procedure, AK Gap is changed from 5 mm to 12 mm and the scaling law is verified by simulation results. 9 mm AK gap values are selected as the most suitable one when output power and frequency of radiated field are taken into consideration. Further investigations are made by using 9 mm AK value in simulation environment. Formation of the virtual cathode is confirmed by Pz vs. z phase space diagram. The mean of applied input voltage value and input power value are found as 87.76 kV and 246 MW, respectively. The peak power and the average power for the generated microwave at the output are also 6.3 MW and 1.8 MW. Thus, power conversion efficiency for both peak and average output power are obtained as 2.56% and 0.73%, respectively. Frequency of the radial and longitudinal components of the produced electric field at the output is 2.92 GHz. Waveguide mode at 2.92 GHz is inferred from radial field distributions of fields and the propagating mode is found as TM01 at 2.92 GHz, which verifies our prediction.","PeriodicalId":104929,"journal":{"name":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design studies of axial vircator for high power microwave generation\",\"authors\":\"I. Küçük, Büşra Timur, Zafer Tanç, S. Demir\",\"doi\":\"10.1109/EMCT.2017.8090379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents design and simulation results of the cylindrical axial virtual cathode oscillator which is frequently used to damage electronic equipment by generating High Power Microwaves (HPM). Simulations are performed in MAGIC Tool Suite which uses FDTD-PIC algorithm to solve particle beam and field interactions. During the design procedure, AK Gap is changed from 5 mm to 12 mm and the scaling law is verified by simulation results. 9 mm AK gap values are selected as the most suitable one when output power and frequency of radiated field are taken into consideration. Further investigations are made by using 9 mm AK value in simulation environment. Formation of the virtual cathode is confirmed by Pz vs. z phase space diagram. The mean of applied input voltage value and input power value are found as 87.76 kV and 246 MW, respectively. The peak power and the average power for the generated microwave at the output are also 6.3 MW and 1.8 MW. Thus, power conversion efficiency for both peak and average output power are obtained as 2.56% and 0.73%, respectively. Frequency of the radial and longitudinal components of the produced electric field at the output is 2.92 GHz. Waveguide mode at 2.92 GHz is inferred from radial field distributions of fields and the propagating mode is found as TM01 at 2.92 GHz, which verifies our prediction.\",\"PeriodicalId\":104929,\"journal\":{\"name\":\"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCT.2017.8090379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCT.2017.8090379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了常用于产生高功率微波而损坏电子设备的圆柱轴向虚拟阴极振荡器的设计与仿真结果。在MAGIC工具套件中进行仿真,使用FDTD-PIC算法求解粒子束和场的相互作用。在设计过程中,将AK间隙从5 mm改变为12 mm,并通过仿真结果验证了其缩放规律。在综合考虑辐射场输出功率和频率的情况下,选择9mm的AK间隙值为最合适的。在仿真环境中采用9mm AK值进行了进一步的研究。通过Pz vs. z相空间图证实了虚拟阴极的形成。输入电压平均值为87.76 kV,输入功率平均值为246 MW。输出端产生的微波峰值功率为6.3 MW,平均功率为1.8 MW。因此,峰值输出功率和平均输出功率的功率转换效率分别为2.56%和0.73%。输出端产生的电场径向分量和纵向分量的频率为2.92 GHz。根据场的径向场分布推断出在2.92 GHz处的波导模式,发现在2.92 GHz处的传播模式为TM01,验证了我们的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design studies of axial vircator for high power microwave generation
This paper presents design and simulation results of the cylindrical axial virtual cathode oscillator which is frequently used to damage electronic equipment by generating High Power Microwaves (HPM). Simulations are performed in MAGIC Tool Suite which uses FDTD-PIC algorithm to solve particle beam and field interactions. During the design procedure, AK Gap is changed from 5 mm to 12 mm and the scaling law is verified by simulation results. 9 mm AK gap values are selected as the most suitable one when output power and frequency of radiated field are taken into consideration. Further investigations are made by using 9 mm AK value in simulation environment. Formation of the virtual cathode is confirmed by Pz vs. z phase space diagram. The mean of applied input voltage value and input power value are found as 87.76 kV and 246 MW, respectively. The peak power and the average power for the generated microwave at the output are also 6.3 MW and 1.8 MW. Thus, power conversion efficiency for both peak and average output power are obtained as 2.56% and 0.73%, respectively. Frequency of the radial and longitudinal components of the produced electric field at the output is 2.92 GHz. Waveguide mode at 2.92 GHz is inferred from radial field distributions of fields and the propagating mode is found as TM01 at 2.92 GHz, which verifies our prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements of signal penetration into mock missiles Advanced finite element analysis for EMC engineering Optically transparent frequency selective surface for filtering 2.6 GHz LTE band Full-wave computational analysis of optical chiral metamaterials Electromagnetic shielding behavior of different metallic wire-meshes and thin metal plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1