局部搜索五元循环优化的reLU-BiLSTM多语种方面文本分类

K. S. Kumar, C. Sulochana
{"title":"局部搜索五元循环优化的reLU-BiLSTM多语种方面文本分类","authors":"K. S. Kumar, C. Sulochana","doi":"10.1002/cpe.7374","DOIUrl":null,"url":null,"abstract":"Aspect‐based sentiment analysis has gained wide popularity due to its benefits of text extraction, classification, and ranking the overall sentiments of each feature extracted. However, the aspect‐based feature extraction techniques often result in acquiring more number aspects that refer to the same feature which arises the need for aspect‐based text classification. Since most of the existing techniques focus on monolingual aspect‐based sentimental analysis, we planned to develop a multilingual aspect‐based text classification for Indian languages. We perform the multilingual aspect‐based text classification on different morphologically rich and complex languages such as Hindi, Tamil, Malayalam, Bengali, Urdu, Telugu, and Sinhalese. To achieve this objective, in this article we present an optimized rectified linear unit (reLU) layer‐based bidirectional long short‐term memory (reLU‐BiLSTM) deep learning tool is developed. The parameters of the reLU‐BiLSTM architecture are optimized using the local search‐based five‐element cycle optimization algorithm (LSFECO) optimization algorithm. Initially, the proposed model preprocesses the multilingual texts obtained from the reviews using different techniques such as tokenization, special character removal, text normalization and so forth. The discrete and categorical features from the different languages are initially extracted by applying the bidirectional encoder representations from transformers (BERT) model which processes the sentences in the text in a layer‐by‐layer manner. The context learning and word embeddings (aspects) present in the text are identified using different approaches such as word mover's distance, continuous Bag‐of‐Words (CBOW), and Cosine similarity. The LSFECO optimized reLU‐BiLSTM architecture classifies the different aspects present in the embedding document to its corresponding classes (flowers, plants, animals, sports, politics, etc). The efficiency of the proposed methodology is evaluated using the text obtained from different text documents such as semantic relations from Wikipedia, Habeas Corpus (HC) Corpora, Sentiment Lexicons for 81 Languages, IIT Bombay English‐Hindi Parallel Corpus, and Indic Languages Multilingual Parallel Corpus. When compared to conventional techniques, the proposed methodology outperforms them in terms of entropy, coverage, purity, processing time, accuracy, F1‐score, recall, and precision.","PeriodicalId":214565,"journal":{"name":"Concurr. Comput. Pract. Exp.","volume":"739 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Local search five-element cycle optimized reLU-BiLSTM for multilingual aspect-based text classification\",\"authors\":\"K. S. Kumar, C. Sulochana\",\"doi\":\"10.1002/cpe.7374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aspect‐based sentiment analysis has gained wide popularity due to its benefits of text extraction, classification, and ranking the overall sentiments of each feature extracted. However, the aspect‐based feature extraction techniques often result in acquiring more number aspects that refer to the same feature which arises the need for aspect‐based text classification. Since most of the existing techniques focus on monolingual aspect‐based sentimental analysis, we planned to develop a multilingual aspect‐based text classification for Indian languages. We perform the multilingual aspect‐based text classification on different morphologically rich and complex languages such as Hindi, Tamil, Malayalam, Bengali, Urdu, Telugu, and Sinhalese. To achieve this objective, in this article we present an optimized rectified linear unit (reLU) layer‐based bidirectional long short‐term memory (reLU‐BiLSTM) deep learning tool is developed. The parameters of the reLU‐BiLSTM architecture are optimized using the local search‐based five‐element cycle optimization algorithm (LSFECO) optimization algorithm. Initially, the proposed model preprocesses the multilingual texts obtained from the reviews using different techniques such as tokenization, special character removal, text normalization and so forth. The discrete and categorical features from the different languages are initially extracted by applying the bidirectional encoder representations from transformers (BERT) model which processes the sentences in the text in a layer‐by‐layer manner. The context learning and word embeddings (aspects) present in the text are identified using different approaches such as word mover's distance, continuous Bag‐of‐Words (CBOW), and Cosine similarity. The LSFECO optimized reLU‐BiLSTM architecture classifies the different aspects present in the embedding document to its corresponding classes (flowers, plants, animals, sports, politics, etc). The efficiency of the proposed methodology is evaluated using the text obtained from different text documents such as semantic relations from Wikipedia, Habeas Corpus (HC) Corpora, Sentiment Lexicons for 81 Languages, IIT Bombay English‐Hindi Parallel Corpus, and Indic Languages Multilingual Parallel Corpus. When compared to conventional techniques, the proposed methodology outperforms them in terms of entropy, coverage, purity, processing time, accuracy, F1‐score, recall, and precision.\",\"PeriodicalId\":214565,\"journal\":{\"name\":\"Concurr. Comput. Pract. Exp.\",\"volume\":\"739 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurr. Comput. Pract. Exp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cpe.7374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurr. Comput. Pract. Exp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpe.7374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local search five-element cycle optimized reLU-BiLSTM for multilingual aspect-based text classification
Aspect‐based sentiment analysis has gained wide popularity due to its benefits of text extraction, classification, and ranking the overall sentiments of each feature extracted. However, the aspect‐based feature extraction techniques often result in acquiring more number aspects that refer to the same feature which arises the need for aspect‐based text classification. Since most of the existing techniques focus on monolingual aspect‐based sentimental analysis, we planned to develop a multilingual aspect‐based text classification for Indian languages. We perform the multilingual aspect‐based text classification on different morphologically rich and complex languages such as Hindi, Tamil, Malayalam, Bengali, Urdu, Telugu, and Sinhalese. To achieve this objective, in this article we present an optimized rectified linear unit (reLU) layer‐based bidirectional long short‐term memory (reLU‐BiLSTM) deep learning tool is developed. The parameters of the reLU‐BiLSTM architecture are optimized using the local search‐based five‐element cycle optimization algorithm (LSFECO) optimization algorithm. Initially, the proposed model preprocesses the multilingual texts obtained from the reviews using different techniques such as tokenization, special character removal, text normalization and so forth. The discrete and categorical features from the different languages are initially extracted by applying the bidirectional encoder representations from transformers (BERT) model which processes the sentences in the text in a layer‐by‐layer manner. The context learning and word embeddings (aspects) present in the text are identified using different approaches such as word mover's distance, continuous Bag‐of‐Words (CBOW), and Cosine similarity. The LSFECO optimized reLU‐BiLSTM architecture classifies the different aspects present in the embedding document to its corresponding classes (flowers, plants, animals, sports, politics, etc). The efficiency of the proposed methodology is evaluated using the text obtained from different text documents such as semantic relations from Wikipedia, Habeas Corpus (HC) Corpora, Sentiment Lexicons for 81 Languages, IIT Bombay English‐Hindi Parallel Corpus, and Indic Languages Multilingual Parallel Corpus. When compared to conventional techniques, the proposed methodology outperforms them in terms of entropy, coverage, purity, processing time, accuracy, F1‐score, recall, and precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Ensemble Based Deep Learning Approach for Attack Detection in IoT Network Jump-Start Cloud: Efficient Deployment Framework for Large-Scale Cloud Applications Semantic middleware for e-science knowledge spaces Effective Internet of Things botnet classification by data upsampling using generative adversarial network and scale fused bidirectional long short term memory attention model Local search five-element cycle optimized reLU-BiLSTM for multilingual aspect-based text classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1