{"title":"用于坠落风险估计的深度摄像机安装的改进","authors":"K. Isomoto, D. Kushida","doi":"10.1080/18824889.2021.1919400","DOIUrl":null,"url":null,"abstract":"We propose a monitoring system for accidental falling of patients using a point cloud dataset (PCD) of the depth camera-captured images. The conventional system requires the PCD to comprise images showing the bed top view. Consequently, the depth camera installation location is restricted. Therefore, we propose a new system with a new PCD generation method. This system enabled PCD correction, corrected dataset division, human location estimation, and fall risk calculation. The Microsoft Kinect sensor was employed as a depth camera in the validation. We demonstrate that the pitch angle can be set between and within the depth camera measurable range to image the subject's movements. These images were utilized in risk estimation. Further, the horizontal distance from the side edge of the bed and the height from the ground were greater than 1.0 m. Under these conditions, the PCD can be corrected into a bed top view dataset, and can help in estimating the fall risk.","PeriodicalId":413922,"journal":{"name":"SICE journal of control, measurement, and system integration","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of a depth camera installation for fall risk estimation\",\"authors\":\"K. Isomoto, D. Kushida\",\"doi\":\"10.1080/18824889.2021.1919400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a monitoring system for accidental falling of patients using a point cloud dataset (PCD) of the depth camera-captured images. The conventional system requires the PCD to comprise images showing the bed top view. Consequently, the depth camera installation location is restricted. Therefore, we propose a new system with a new PCD generation method. This system enabled PCD correction, corrected dataset division, human location estimation, and fall risk calculation. The Microsoft Kinect sensor was employed as a depth camera in the validation. We demonstrate that the pitch angle can be set between and within the depth camera measurable range to image the subject's movements. These images were utilized in risk estimation. Further, the horizontal distance from the side edge of the bed and the height from the ground were greater than 1.0 m. Under these conditions, the PCD can be corrected into a bed top view dataset, and can help in estimating the fall risk.\",\"PeriodicalId\":413922,\"journal\":{\"name\":\"SICE journal of control, measurement, and system integration\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE journal of control, measurement, and system integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/18824889.2021.1919400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE journal of control, measurement, and system integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/18824889.2021.1919400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improvement of a depth camera installation for fall risk estimation
We propose a monitoring system for accidental falling of patients using a point cloud dataset (PCD) of the depth camera-captured images. The conventional system requires the PCD to comprise images showing the bed top view. Consequently, the depth camera installation location is restricted. Therefore, we propose a new system with a new PCD generation method. This system enabled PCD correction, corrected dataset division, human location estimation, and fall risk calculation. The Microsoft Kinect sensor was employed as a depth camera in the validation. We demonstrate that the pitch angle can be set between and within the depth camera measurable range to image the subject's movements. These images were utilized in risk estimation. Further, the horizontal distance from the side edge of the bed and the height from the ground were greater than 1.0 m. Under these conditions, the PCD can be corrected into a bed top view dataset, and can help in estimating the fall risk.