Navonil Chatterjee, Marcelo Ruaro, Kevin J. M. Martin, J. Diguet
{"title":"减轻无线片上网络中的收发器和令牌控制器永久故障","authors":"Navonil Chatterjee, Marcelo Ruaro, Kevin J. M. Martin, J. Diguet","doi":"10.1109/pdp55904.2022.00045","DOIUrl":null,"url":null,"abstract":"Conventional wired Network-on-Chip (NoC) designs suffer from performance degradation due to multi-hop long-distance communication. To address such a problem, in the past decade, researchers have been focused on investigating Wireless NoC (WiNoC), which evolved as a viable solution to mitigate this communication bottleneck by using single-hop long-range wireless links. However, many researchers reported that these interconnects may suffer failure due to the complexity of implementation. Although few works in the literature tackle faults in WiNoC, none of them provides a comprehensive study related to channel access mechanisms in the presence of faults. To fill this gap, we propose a fault aware WiNoC architecture. We discuss two types of faults in wireless interconnects, namely, transceiver faults and token controller faults. We provide different fault-tolerant techniques to deal with such faults. The proposed FTWiNoC presents, on average, 17.8% and 8.9% improvement in latency compared to two different fault mitigation strategies in the literature.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mitigating Transceiver and Token Controller Permanent Faults in Wireless Network-on-Chip\",\"authors\":\"Navonil Chatterjee, Marcelo Ruaro, Kevin J. M. Martin, J. Diguet\",\"doi\":\"10.1109/pdp55904.2022.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional wired Network-on-Chip (NoC) designs suffer from performance degradation due to multi-hop long-distance communication. To address such a problem, in the past decade, researchers have been focused on investigating Wireless NoC (WiNoC), which evolved as a viable solution to mitigate this communication bottleneck by using single-hop long-range wireless links. However, many researchers reported that these interconnects may suffer failure due to the complexity of implementation. Although few works in the literature tackle faults in WiNoC, none of them provides a comprehensive study related to channel access mechanisms in the presence of faults. To fill this gap, we propose a fault aware WiNoC architecture. We discuss two types of faults in wireless interconnects, namely, transceiver faults and token controller faults. We provide different fault-tolerant techniques to deal with such faults. The proposed FTWiNoC presents, on average, 17.8% and 8.9% improvement in latency compared to two different fault mitigation strategies in the literature.\",\"PeriodicalId\":210759,\"journal\":{\"name\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/pdp55904.2022.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mitigating Transceiver and Token Controller Permanent Faults in Wireless Network-on-Chip
Conventional wired Network-on-Chip (NoC) designs suffer from performance degradation due to multi-hop long-distance communication. To address such a problem, in the past decade, researchers have been focused on investigating Wireless NoC (WiNoC), which evolved as a viable solution to mitigate this communication bottleneck by using single-hop long-range wireless links. However, many researchers reported that these interconnects may suffer failure due to the complexity of implementation. Although few works in the literature tackle faults in WiNoC, none of them provides a comprehensive study related to channel access mechanisms in the presence of faults. To fill this gap, we propose a fault aware WiNoC architecture. We discuss two types of faults in wireless interconnects, namely, transceiver faults and token controller faults. We provide different fault-tolerant techniques to deal with such faults. The proposed FTWiNoC presents, on average, 17.8% and 8.9% improvement in latency compared to two different fault mitigation strategies in the literature.