考虑角色适宜性的网状网络拓扑结构

Mohit Agnihotri, Roman Chirikov, Francesco Militano, C. Cavdar
{"title":"考虑角色适宜性的网状网络拓扑结构","authors":"Mohit Agnihotri, Roman Chirikov, Francesco Militano, C. Cavdar","doi":"10.1109/WCNC.2016.7564707","DOIUrl":null,"url":null,"abstract":"The paper studies various mesh topology formation techniques that can be used to aid the development of large-scale capillary networks. The work focuses on how mesh networks can be established using Bluetooth Low Energy exploiting the heterogeneous characteristics of the devices in the network. A novel algorithm called Topology Formation considering Role Suitability (TFRS) is proposed aiming to maximize the network lifetime. The algorithm employs a newly introduced metric called role suitability metric (RSM) to assign the best role among master, relay and slave to a participating device. The RSM metric is computed from device characteristics including, but not limited to, energy, mobility and computational capability. We use system-level simulation to evaluate the performance of the proposed algorithm against a reference under a homogeneous deployment scenario consisting of heterogeneous devices. Results show that the network lifetime can be improved significantly when the topology is formed considering the device characteristics for both master role selection and relay selection. TFRS can achieve 20% to 40% higher network lifetime depending on the deployment characteristics over the reference algorithm.","PeriodicalId":436094,"journal":{"name":"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Topology Formation in mesh networks considering Role Suitability\",\"authors\":\"Mohit Agnihotri, Roman Chirikov, Francesco Militano, C. Cavdar\",\"doi\":\"10.1109/WCNC.2016.7564707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies various mesh topology formation techniques that can be used to aid the development of large-scale capillary networks. The work focuses on how mesh networks can be established using Bluetooth Low Energy exploiting the heterogeneous characteristics of the devices in the network. A novel algorithm called Topology Formation considering Role Suitability (TFRS) is proposed aiming to maximize the network lifetime. The algorithm employs a newly introduced metric called role suitability metric (RSM) to assign the best role among master, relay and slave to a participating device. The RSM metric is computed from device characteristics including, but not limited to, energy, mobility and computational capability. We use system-level simulation to evaluate the performance of the proposed algorithm against a reference under a homogeneous deployment scenario consisting of heterogeneous devices. Results show that the network lifetime can be improved significantly when the topology is formed considering the device characteristics for both master role selection and relay selection. TFRS can achieve 20% to 40% higher network lifetime depending on the deployment characteristics over the reference algorithm.\",\"PeriodicalId\":436094,\"journal\":{\"name\":\"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNC.2016.7564707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2016.7564707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了各种网格拓扑形成技术,这些技术可用于帮助大型毛细管网络的发展。这项工作的重点是如何利用低功耗蓝牙来建立网状网络,利用网络中设备的异构特性。提出了一种基于角色适宜性的拓扑形成算法(TFRS),以最大化网络生存期为目标。该算法采用了一种新引入的角色适合度度量(RSM)来为参与设备在主、中继和从设备中分配最佳角色。RSM度量根据设备特性计算,包括但不限于能量、移动性和计算能力。在由异构设备组成的同构部署场景下,我们使用系统级模拟来评估所提出算法的性能。结果表明,同时考虑主角色选择和中继选择的设备特性,形成拓扑结构,可以显著提高网络生存时间。根据部署特性的不同,TFRS可以比参考算法提高20%到40%的网络生存时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topology Formation in mesh networks considering Role Suitability
The paper studies various mesh topology formation techniques that can be used to aid the development of large-scale capillary networks. The work focuses on how mesh networks can be established using Bluetooth Low Energy exploiting the heterogeneous characteristics of the devices in the network. A novel algorithm called Topology Formation considering Role Suitability (TFRS) is proposed aiming to maximize the network lifetime. The algorithm employs a newly introduced metric called role suitability metric (RSM) to assign the best role among master, relay and slave to a participating device. The RSM metric is computed from device characteristics including, but not limited to, energy, mobility and computational capability. We use system-level simulation to evaluate the performance of the proposed algorithm against a reference under a homogeneous deployment scenario consisting of heterogeneous devices. Results show that the network lifetime can be improved significantly when the topology is formed considering the device characteristics for both master role selection and relay selection. TFRS can achieve 20% to 40% higher network lifetime depending on the deployment characteristics over the reference algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards 5G-enabled Tactile Internet: Radio resource allocation for haptic communications A two dimensional beam scanning array antenna for 5G wireless communications Software Defined Networking for cognitive Radio over Fiber systems On the performance of downlink optical communication via relaying in the presence of pointing errors Channel measurements in an open-pit mine using USRPs: 5G - expect the unexpected
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1