基于Schweizer-Wolff测度的依赖源盲分离

Keying Liu, Rui Li, Fasong Wang
{"title":"基于Schweizer-Wolff测度的依赖源盲分离","authors":"Keying Liu, Rui Li, Fasong Wang","doi":"10.1109/URKE.2012.6319571","DOIUrl":null,"url":null,"abstract":"There are a large variety of applications that require considering sources that usually behave light or strong dependence and this is not the case that common blind signal separation (BSS) algorithms can do. The purpose of this paper is to develop non-parametric BSS algorithm for linear dependent source signals, which is proposed under the framework of contrast method. The contrast function is derived from the Schweizer-Wolff measure of pairwise dependence between the variables. Simulation results show that the proposed algorithm is able to separate the dependent signals and yield ideal performance.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind separation of dependent sources using Schweizer-Wolff measure\",\"authors\":\"Keying Liu, Rui Li, Fasong Wang\",\"doi\":\"10.1109/URKE.2012.6319571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a large variety of applications that require considering sources that usually behave light or strong dependence and this is not the case that common blind signal separation (BSS) algorithms can do. The purpose of this paper is to develop non-parametric BSS algorithm for linear dependent source signals, which is proposed under the framework of contrast method. The contrast function is derived from the Schweizer-Wolff measure of pairwise dependence between the variables. Simulation results show that the proposed algorithm is able to separate the dependent signals and yield ideal performance.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有各种各样的应用需要考虑通常表现为轻或强依赖的源,这不是普通盲信号分离(BSS)算法可以做到的情况。本文的目的是在对比法的框架下,发展线性相关源信号的非参数BSS算法。对比函数是从变量之间两两依赖的Schweizer-Wolff度量中导出的。仿真结果表明,该算法能够分离出相关信号,并取得了理想的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blind separation of dependent sources using Schweizer-Wolff measure
There are a large variety of applications that require considering sources that usually behave light or strong dependence and this is not the case that common blind signal separation (BSS) algorithms can do. The purpose of this paper is to develop non-parametric BSS algorithm for linear dependent source signals, which is proposed under the framework of contrast method. The contrast function is derived from the Schweizer-Wolff measure of pairwise dependence between the variables. Simulation results show that the proposed algorithm is able to separate the dependent signals and yield ideal performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driving system stability analysis and improving of IPMSM Bayesian network structure learning for discrete and continuous variables Development of genetic algorithm on multi-vendor integrated procurement-production system under shared transportation and just-in-time delivery system Inter-transaction association rule mining in the Indonesia stock exchange market Extreme graphs with given order and edge-neighbor-scattering number
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1