WSQ-AdderNet:基于高效权重标准化的量化AdderNet FPGA加速器设计与高密度INT8 DSP-LUT共封装优化

Yunxiang Zhang, Biao Sun, Weixiong Jiang, Y. Ha, Miao Hu, Wenfeng Zhao
{"title":"WSQ-AdderNet:基于高效权重标准化的量化AdderNet FPGA加速器设计与高密度INT8 DSP-LUT共封装优化","authors":"Yunxiang Zhang, Biao Sun, Weixiong Jiang, Y. Ha, Miao Hu, Wenfeng Zhao","doi":"10.1145/3508352.3549439","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have been widely adopted for various machine intelligence tasks. Nevertheless, CNNs are still known to be computational demanding due to the convolutional kernels involving expensive Multiply-ACcumulate (MAC) operations. Recent proposals on hardware-optimal neural network architectures suggest that AdderNet with a lightweight ℓ1-norm based feature extraction kernel can be an efficient alternative to the CNN counterpart, where the expensive MAC operations are substituted with efficient Sum-of-Absolute-Difference (SAD) operations. Nevertheless, it lacks an efficient hardware implementation methodology for AdderNet as compared to the existing methodologies for CNNs, including efficient quantization, full-integer accelerator implementation, and judicious resource utilization of DSP slices of FPGA devices. In this paper, we present WSQ-AdderNet, a generic framework to quantize and optimize AdderNet-based accelerator designs on embedded FPGA devices. First, we propose a weight standardization technique to facilitate weight quantization in AdderNet. Second, we demonstrate a full-integer quantization hardware implementation strategy, including weight and activation quantization methodologies. Third, we apply DSP packing optimization to maximize the DSP utilization efficiency, where Octo-INT8 can be achieved via DSP-LUT co-packing. Finally, we implement the design using Xilinx Vitis HLS (high-level synthesis) and Vivado to Xilinx Kria KV-260 FPGA. Our experimental results of ResNet-20 using WSQ-AdderNet demonstrate that the implementations achieve 89.9% inference accuracy with INT8 implementation, which shows little performance loss as compared to the FP32 and INT8 CNN designs. At the hardware level, WSQ-AdderNet achieves up to 3.39× DSP density improvement with nearly the same throughput as compared to INT8 CNN design. The reduction in DSP utilization makes it possible to deploy large network models on resource-constrained devices. When further scaling up the PE sizes by 39.8%, WSQ-AdderNet can achieve 1.48× throughput improvement while still achieving 2.42× DSP density improvement.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"WSQ-AdderNet: Efficient Weight Standardization based Quantized AdderNet FPGA Accelerator Design with High-Density INT8 DSP-LUT Co-Packing Optimization\",\"authors\":\"Yunxiang Zhang, Biao Sun, Weixiong Jiang, Y. Ha, Miao Hu, Wenfeng Zhao\",\"doi\":\"10.1145/3508352.3549439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have been widely adopted for various machine intelligence tasks. Nevertheless, CNNs are still known to be computational demanding due to the convolutional kernels involving expensive Multiply-ACcumulate (MAC) operations. Recent proposals on hardware-optimal neural network architectures suggest that AdderNet with a lightweight ℓ1-norm based feature extraction kernel can be an efficient alternative to the CNN counterpart, where the expensive MAC operations are substituted with efficient Sum-of-Absolute-Difference (SAD) operations. Nevertheless, it lacks an efficient hardware implementation methodology for AdderNet as compared to the existing methodologies for CNNs, including efficient quantization, full-integer accelerator implementation, and judicious resource utilization of DSP slices of FPGA devices. In this paper, we present WSQ-AdderNet, a generic framework to quantize and optimize AdderNet-based accelerator designs on embedded FPGA devices. First, we propose a weight standardization technique to facilitate weight quantization in AdderNet. Second, we demonstrate a full-integer quantization hardware implementation strategy, including weight and activation quantization methodologies. Third, we apply DSP packing optimization to maximize the DSP utilization efficiency, where Octo-INT8 can be achieved via DSP-LUT co-packing. Finally, we implement the design using Xilinx Vitis HLS (high-level synthesis) and Vivado to Xilinx Kria KV-260 FPGA. Our experimental results of ResNet-20 using WSQ-AdderNet demonstrate that the implementations achieve 89.9% inference accuracy with INT8 implementation, which shows little performance loss as compared to the FP32 and INT8 CNN designs. At the hardware level, WSQ-AdderNet achieves up to 3.39× DSP density improvement with nearly the same throughput as compared to INT8 CNN design. The reduction in DSP utilization makes it possible to deploy large network models on resource-constrained devices. When further scaling up the PE sizes by 39.8%, WSQ-AdderNet can achieve 1.48× throughput improvement while still achieving 2.42× DSP density improvement.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

卷积神经网络(cnn)已被广泛应用于各种机器智能任务。然而,由于卷积核涉及昂贵的乘法-累积(MAC)操作,cnn仍然被认为是计算要求很高的。最近关于硬件最优神经网络架构的建议表明,AdderNet具有轻量级的基于1范数的特征提取内核,可以有效地替代CNN,其中昂贵的MAC操作被高效的绝对差和(SAD)操作取代。然而,与现有的cnn方法相比,AdderNet缺乏一种有效的硬件实现方法,包括有效的量化、全整数加速器的实现以及对FPGA器件的DSP切片的明智的资源利用。在本文中,我们提出了WSQ-AdderNet,一个通用框架,用于量化和优化嵌入式FPGA器件上基于addernet的加速器设计。首先,我们提出了一种权值标准化技术来促进AdderNet中的权值量化。其次,我们展示了一个全整数量化硬件实现策略,包括权重和激活量化方法。第三,我们应用DSP封装优化来最大化DSP利用效率,其中Octo-INT8可以通过DSP- lut共封装来实现。最后,我们利用Xilinx Vitis HLS(高级合成)和Vivado对Xilinx Kria KV-260 FPGA进行了设计实现。我们使用WSQ-AdderNet在ResNet-20上的实验结果表明,与INT8实现相比,实现的推理准确率达到89.9%,与FP32和INT8 CNN设计相比,性能损失很小。在硬件层面,WSQ-AdderNet实现了高达3.39倍的DSP密度改进,与INT8 CNN设计相比,吞吐量几乎相同。DSP利用率的降低使得在资源受限的设备上部署大型网络模型成为可能。当进一步扩大PE尺寸39.8%时,WSQ-AdderNet可以实现1.48倍的吞吐量改进,同时仍然实现2.42倍的DSP密度改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WSQ-AdderNet: Efficient Weight Standardization based Quantized AdderNet FPGA Accelerator Design with High-Density INT8 DSP-LUT Co-Packing Optimization
Convolutional neural networks (CNNs) have been widely adopted for various machine intelligence tasks. Nevertheless, CNNs are still known to be computational demanding due to the convolutional kernels involving expensive Multiply-ACcumulate (MAC) operations. Recent proposals on hardware-optimal neural network architectures suggest that AdderNet with a lightweight ℓ1-norm based feature extraction kernel can be an efficient alternative to the CNN counterpart, where the expensive MAC operations are substituted with efficient Sum-of-Absolute-Difference (SAD) operations. Nevertheless, it lacks an efficient hardware implementation methodology for AdderNet as compared to the existing methodologies for CNNs, including efficient quantization, full-integer accelerator implementation, and judicious resource utilization of DSP slices of FPGA devices. In this paper, we present WSQ-AdderNet, a generic framework to quantize and optimize AdderNet-based accelerator designs on embedded FPGA devices. First, we propose a weight standardization technique to facilitate weight quantization in AdderNet. Second, we demonstrate a full-integer quantization hardware implementation strategy, including weight and activation quantization methodologies. Third, we apply DSP packing optimization to maximize the DSP utilization efficiency, where Octo-INT8 can be achieved via DSP-LUT co-packing. Finally, we implement the design using Xilinx Vitis HLS (high-level synthesis) and Vivado to Xilinx Kria KV-260 FPGA. Our experimental results of ResNet-20 using WSQ-AdderNet demonstrate that the implementations achieve 89.9% inference accuracy with INT8 implementation, which shows little performance loss as compared to the FP32 and INT8 CNN designs. At the hardware level, WSQ-AdderNet achieves up to 3.39× DSP density improvement with nearly the same throughput as compared to INT8 CNN design. The reduction in DSP utilization makes it possible to deploy large network models on resource-constrained devices. When further scaling up the PE sizes by 39.8%, WSQ-AdderNet can achieve 1.48× throughput improvement while still achieving 2.42× DSP density improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1