基于Gabor滤波和支持向量机的道路车辆检测

Zehang Sun, G. Bebis, Ronald Miller
{"title":"基于Gabor滤波和支持向量机的道路车辆检测","authors":"Zehang Sun, G. Bebis, Ronald Miller","doi":"10.1109/ICDSP.2002.1028263","DOIUrl":null,"url":null,"abstract":"On-road vehicle detection is an important problem with application to driver assistance systems and autonomous, self-guided vehicles. The focus of this paper is on the problem of feature extraction and classification for rear-view vehicle detection. Specifically, we propose using Gabor filters for vehicle feature extraction and support vector machines (SVM) for vehicle detection. Gabor filters provide a mechanism for obtaining some degree of invariance to intensity due to global illumination, selectivity in scale, and selectivity in orientation. Basically, they are orientation and scale tunable edge and line detectors. Vehicles do contain strong edges and lines at different orientation and scales, thus, the statistics of these features (e.g., mean, standard deviation, and skewness) could be very powerful for vehicle detection. To provide robustness, these statistics are not extracted from the whole image but rather are collected from several subimages obtained by subdividing the original image into subwindows. These features are then used to train a SVM classifier. Extensive experimentation and comparisons using real data, different features (e.g., based on principal components analysis (PCA)), and different classifiers (e.g., neural networks (NN)) demonstrate the superiority of the proposed approach which has achieved an average accuracy of 94.81% on completely novel test images.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"225","resultStr":"{\"title\":\"On-road vehicle detection using Gabor filters and support vector machines\",\"authors\":\"Zehang Sun, G. Bebis, Ronald Miller\",\"doi\":\"10.1109/ICDSP.2002.1028263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-road vehicle detection is an important problem with application to driver assistance systems and autonomous, self-guided vehicles. The focus of this paper is on the problem of feature extraction and classification for rear-view vehicle detection. Specifically, we propose using Gabor filters for vehicle feature extraction and support vector machines (SVM) for vehicle detection. Gabor filters provide a mechanism for obtaining some degree of invariance to intensity due to global illumination, selectivity in scale, and selectivity in orientation. Basically, they are orientation and scale tunable edge and line detectors. Vehicles do contain strong edges and lines at different orientation and scales, thus, the statistics of these features (e.g., mean, standard deviation, and skewness) could be very powerful for vehicle detection. To provide robustness, these statistics are not extracted from the whole image but rather are collected from several subimages obtained by subdividing the original image into subwindows. These features are then used to train a SVM classifier. Extensive experimentation and comparisons using real data, different features (e.g., based on principal components analysis (PCA)), and different classifiers (e.g., neural networks (NN)) demonstrate the superiority of the proposed approach which has achieved an average accuracy of 94.81% on completely novel test images.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"225\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 225

摘要

道路车辆检测是驾驶辅助系统和自动驾驶汽车应用中的一个重要问题。本文的研究重点是后视车检测中的特征提取与分类问题。具体来说,我们建议使用Gabor滤波器进行车辆特征提取,并使用支持向量机(SVM)进行车辆检测。Gabor滤波器提供了一种机制,由于全局照明、尺度选择性和方向选择性,可以获得一定程度的强度不变性。基本上,它们是方向和尺度可调的边缘和线检测器。车辆确实包含不同方向和尺度的强大边缘和线条,因此,这些特征的统计(例如,平均值,标准差和偏度)对于车辆检测可能非常强大。为了提供鲁棒性,这些统计数据不是从整个图像中提取的,而是从将原始图像细分为子窗口获得的几个子图像中收集的。然后使用这些特征来训练SVM分类器。使用真实数据、不同特征(例如,基于主成分分析(PCA))和不同分类器(例如,神经网络(NN))进行的大量实验和比较证明了所提出方法的优越性,该方法在全新的测试图像上达到了94.81%的平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-road vehicle detection using Gabor filters and support vector machines
On-road vehicle detection is an important problem with application to driver assistance systems and autonomous, self-guided vehicles. The focus of this paper is on the problem of feature extraction and classification for rear-view vehicle detection. Specifically, we propose using Gabor filters for vehicle feature extraction and support vector machines (SVM) for vehicle detection. Gabor filters provide a mechanism for obtaining some degree of invariance to intensity due to global illumination, selectivity in scale, and selectivity in orientation. Basically, they are orientation and scale tunable edge and line detectors. Vehicles do contain strong edges and lines at different orientation and scales, thus, the statistics of these features (e.g., mean, standard deviation, and skewness) could be very powerful for vehicle detection. To provide robustness, these statistics are not extracted from the whole image but rather are collected from several subimages obtained by subdividing the original image into subwindows. These features are then used to train a SVM classifier. Extensive experimentation and comparisons using real data, different features (e.g., based on principal components analysis (PCA)), and different classifiers (e.g., neural networks (NN)) demonstrate the superiority of the proposed approach which has achieved an average accuracy of 94.81% on completely novel test images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
H/sub /spl infin// bounded optimal updating - down-dating algorithm A systematic approach to seizure prediction using genetic and classifier based feature selection A prognostic-classification system based on a probabilistic NN for predicting urine bladder cancer recurrence Implementation of real-time AMDF pitch-detection for voice gender normalisation Fourier filtering of continuous global surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1