{"title":"简短公告:可组合动态安全仿真","authors":"Pierre Civit, M. Potop-Butucaru","doi":"10.1145/3490148.3538562","DOIUrl":null,"url":null,"abstract":"This work extends the composable secure-emulation of Canetti et al. to dynamic settings. Our work builds on top of dynamic probabilistic I/O automata, a recent framework introduced to model dynamic probabilistic systems. Our extension is an important tool towards the formal verification of protocols combining probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, cybersecure distributed protocols etc).","PeriodicalId":112865,"journal":{"name":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Brief Announcement: Composable Dynamic Secure Emulation\",\"authors\":\"Pierre Civit, M. Potop-Butucaru\",\"doi\":\"10.1145/3490148.3538562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work extends the composable secure-emulation of Canetti et al. to dynamic settings. Our work builds on top of dynamic probabilistic I/O automata, a recent framework introduced to model dynamic probabilistic systems. Our extension is an important tool towards the formal verification of protocols combining probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, cybersecure distributed protocols etc).\",\"PeriodicalId\":112865,\"journal\":{\"name\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3490148.3538562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3490148.3538562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work extends the composable secure-emulation of Canetti et al. to dynamic settings. Our work builds on top of dynamic probabilistic I/O automata, a recent framework introduced to model dynamic probabilistic systems. Our extension is an important tool towards the formal verification of protocols combining probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, cybersecure distributed protocols etc).