{"title":"基于拥挤群体的多目标旅行商问题蚁群优化","authors":"Daniel Angus","doi":"10.1109/MCDM.2007.369110","DOIUrl":null,"url":null,"abstract":"Ant inspired algorithms have gained popularity for use in multi-objective problem domains. One specific algorithm, Population-based ACO, which uses a population as well as the traditional pheromone matrix, has been shown to be effective at solving combinatorial multi-objective optimisation problems. This paper extends the population-based ACO algorithm with a crowding population replacement scheme to increase the search efficacy and efficiency. Results are shown for a suite of multi-objective travelling salesman problems of varying complexity","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Crowding Population-based Ant Colony Optimisation for the Multi-objective Travelling Salesman Problem\",\"authors\":\"Daniel Angus\",\"doi\":\"10.1109/MCDM.2007.369110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant inspired algorithms have gained popularity for use in multi-objective problem domains. One specific algorithm, Population-based ACO, which uses a population as well as the traditional pheromone matrix, has been shown to be effective at solving combinatorial multi-objective optimisation problems. This paper extends the population-based ACO algorithm with a crowding population replacement scheme to increase the search efficacy and efficiency. Results are shown for a suite of multi-objective travelling salesman problems of varying complexity\",\"PeriodicalId\":306422,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2007.369110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crowding Population-based Ant Colony Optimisation for the Multi-objective Travelling Salesman Problem
Ant inspired algorithms have gained popularity for use in multi-objective problem domains. One specific algorithm, Population-based ACO, which uses a population as well as the traditional pheromone matrix, has been shown to be effective at solving combinatorial multi-objective optimisation problems. This paper extends the population-based ACO algorithm with a crowding population replacement scheme to increase the search efficacy and efficiency. Results are shown for a suite of multi-objective travelling salesman problems of varying complexity