{"title":"基于深度神经网络的无线网络在线节能功率控制","authors":"A. Zappone, M. Debbah, Z. Altman","doi":"10.1109/SPAWC.2018.8445857","DOIUrl":null,"url":null,"abstract":"The work describes how deep learning by artificial neural networks (ANNs) enables online power allocation for energy efficiency maximization in wireless interference networks. A deep ANN architecture is proposed and trained to take as input the network communication channels and to output suitable power allocations. It is shown that this approach requires a much lower computational complexity compared to traditional optimization-oriented approaches, dispensing with the need of solving the optimization problem anew in each channel coherence time. Despite the lower complexity, numerical results show that a properly trained ANN achieves similar performance as more traditional optimization-oriented methods.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"255 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Online Energy-Efficient Power Control in Wireless Networks by Deep Neural Networks\",\"authors\":\"A. Zappone, M. Debbah, Z. Altman\",\"doi\":\"10.1109/SPAWC.2018.8445857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work describes how deep learning by artificial neural networks (ANNs) enables online power allocation for energy efficiency maximization in wireless interference networks. A deep ANN architecture is proposed and trained to take as input the network communication channels and to output suitable power allocations. It is shown that this approach requires a much lower computational complexity compared to traditional optimization-oriented approaches, dispensing with the need of solving the optimization problem anew in each channel coherence time. Despite the lower complexity, numerical results show that a properly trained ANN achieves similar performance as more traditional optimization-oriented methods.\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"255 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8445857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online Energy-Efficient Power Control in Wireless Networks by Deep Neural Networks
The work describes how deep learning by artificial neural networks (ANNs) enables online power allocation for energy efficiency maximization in wireless interference networks. A deep ANN architecture is proposed and trained to take as input the network communication channels and to output suitable power allocations. It is shown that this approach requires a much lower computational complexity compared to traditional optimization-oriented approaches, dispensing with the need of solving the optimization problem anew in each channel coherence time. Despite the lower complexity, numerical results show that a properly trained ANN achieves similar performance as more traditional optimization-oriented methods.